Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 141: 110120, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641987

RESUMO

Proteolytic side activity of the lactase preparations (LPs) intended for ultra-high temperature hydrolyzed-lactose milk (UHLM) production induces changes in the product quality during shelf-life. The problem is particularly relevant when the enzyme is added aseptically in the packaging ("in pack" process), while the negative quality effects can be mitigated following the "in batch" process adding the LP before thermal sterilization. In this study, we monitored the quality over time of UHLM produced "in batch" and stored at 4, 20, 30 and 40 °C focusing on proteolysis, volatiles organic compounds (VOCs) formation and color changes. The goal was to identify the key reactions and compounds relevant for the product quality. An increase in storage temperature determined significant changes in the free amino acids profile increasing Strecker aldehydes and methyl ketones formation. At 30 and 40 °C, Maillard reaction and lipid oxidation ended up in a modification of the milk color, whereas at 4 and 20 °C no significant alteration was observed. Altogether, the results suggested a coordinate involvement of Maillard reaction, protein and lipid oxidation to milk browning and off-flavors formation in UHLM.


Assuntos
Lactose , Compostos Orgânicos Voláteis , Aminoácidos , Animais , Leite , Temperatura
2.
Food Res Int ; 136: 109552, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846602

RESUMO

Manufacturing shelf-stable Ultra-high temperature hydrolyzed-lactose milk (UHLM) is a challenge for dairy producers, as the product undergoes chemical changes during storage due to both reducing sugars reactivity and proteolysis arising from the impurity of the lactase preparations. In the present study, the "in batch" production system, which includes the addition of the lactase before the thermal treatment, was demonstrated a valuable alternative to the more popular "in pack" system, where lactase is added directly into each milk package after thermal sterilization. The features of the technology were investigated by monitoring the changes in free amino acids, volatile organic compounds, color and sensory properties of UHLMs produced with three different lactase preparations (LPs), up to 120 days at 20 °C. Upon UHT processing, the proteolytic side activity of lactases was minimized, so minimum breakdown of milk protein was achieved. The release of free amino acids was dependent on the lactase purity only in the early production phases, whereas it did not change over time. The Strecker aldehydes benzaldehyde and 2-methylbutanal resulted as effective markers to correlate with the initial lactase purity during storage. Color and sensory slightly changed during storage but were poorly correlated with the different lactases, resembling to phenomena typical of milk aging. This latter result suggested that production costs might be lowered by opting for less-purified lactases when considering the "in batch" technology, supporting the application of this production system for the design of UHLM with high-quality standards and low risk of alterations during shelf-life.


Assuntos
Lactase , Lactose , Animais , Hidrólise , Leite , Proteínas do Leite
3.
J Mass Spectrom ; 55(11): e4505, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32096591

RESUMO

Lactose-free dairy products undergo several chemical modifications during shelf life because of the reactivity of glucose and galactose produced by the lactose enzymatic hydrolysis. In this study, proton transfer reaction-mass spectrometry (PTR-MS), coupled with a time-of-flight (TOF) mass analyzer, was applied to get an insight on the phenomena occurring during the shelf life of ultrahigh-temperature (UHT) lactose-free milk (LFM). UHT LFMs produced by three different commercial lactase preparations were evaluated during storage at 20°C over a 150 days period, sampling the milk every 30 days. Production was repeated three times, on three consecutive weeks, in order to take milk variability into consideration. Principal component analysis applied to the whole "volatilome" data demonstrated the capability of PTR-TOF-MS in detecting the milk batch-to-batch variability: Freshly produced milk samples were distinguished based on the week of production at the beginning of shelf life. Additionally, a clear evolution of the volatiles organic compounds (VOCs) profiling during storage was highlighted. Further statistical analysis confirmed VOCs temporal evolution, mostly because of changes in methyl ketones concentration. Differences caused by the commercial lactases did not emerged, except for benzaldehyde. Altogether, data demonstrated PTR-TOF-MS analysis as a valuable and rapid method for the detection of changes in the VOCs profiling of UHT LFM.


Assuntos
Lactose/análise , Leite/química , Animais , Análise de Alimentos/métodos , Qualidade dos Alimentos , Lactase/química , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA