Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 69(1): 124-136, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686211

RESUMO

Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.


Assuntos
Células de Schwann , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Placa Motora , Proteínas Musculares , Bainha de Mielina , Simportadores/genética
2.
Front Cell Neurosci ; 14: 148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547370

RESUMO

Recent research into axon-glial interactions in the nervous system has made a compelling case that glial cells have a relevant role in the metabolic support of axons, and that, in the case of myelinating cells, this role is independent of myelination itself. In this mini-review article, we summarize some of those observations and focus on Schwann cells (SC), drawing parallels between glia of the central and peripheral nervous systems (PNS), pointing out limitations in current knowledge, and discussing its potential clinical relevance. First, we introduce SC, their development and main roles, and follow with an evolutionary perspective of glial metabolic function. Then we provide evidence of the myelin-independent aspects of axonal support and their coupling to neuronal metabolism. Finally, we address the opportunity to use SC-axon metabolic interactions as therapeutic targets to treat peripheral neuropathies.

3.
Cell Rep ; 26(13): 3484-3492.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917305

RESUMO

The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nociceptores/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Galinhas , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Nociceptividade/fisiologia , Fatores de Transcrição/metabolismo
4.
J Neurosci Methods ; 294: 122-135, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174019

RESUMO

BACKGROUND: Oligodendrocytes (OL) are the myelinating cells of the central nervous system. OL differentiation from oligodendrocyte progenitor cells (OPC) is accompanied by characteristic stereotypical morphological changes. Quantitative imaging of those morphological alterations during OPC differentiation is commonly used for characterization of new molecules in cell differentiation and myelination and screening of new pro-myelinating drugs. Current available imaging analysis methods imply a non-automated morphology assessment, which is time-consuming and prone to user subjective evaluation. NEW METHOD: Here, we describe an automated high-throughput quantitative image analysis method entitled collar occupancy that allows morphometric ranking of different stages of in vitro OL differentiation in a high-content analysis format. Collar occupancy is based on the determination of the percentage of area occupied by OPC/OL cytoplasmic protrusions within a defined region that contains the protrusion network, the collar. RESULTS: We observed that more differentiated cells have higher collar occupancy and, therefore, this parameter correlates with the degree of OL differentiation. COMPARISON WITH EXISTING METHODS: In comparison with the method of manual categorization, we found the collar occupancy to be more robust and unbiased. Moreover, when coupled with myelin basic protein (MBP) staining to quantify the percentage of myelinating cells, we were able to evaluate the role of new molecules in OL differentiation and myelination, such as Dusp19 and Kank2. CONCLUSIONS: Altogether, we have successfully developed an automated and quantitative method to morphologically characterize OL differentiation in vitro that can be used in multiple studies of OL biology.


Assuntos
Diferenciação Celular , Processamento de Imagem Assistida por Computador/métodos , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Animais , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia de Fluorescência/métodos , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA