Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(1): e1004592, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569427

RESUMO

The genus Neisseria includes both commensal and pathogenic species which are genetically closely related. However, only meningococcus and gonococcus are important human pathogens. Very few toxins are known to be secreted by pathogenic Neisseria species. Recently, toxins secreted via type V secretion system and belonging to the widespread family of contact-dependent inhibition (CDI) toxins have been described in numerous species including meningococcus. In this study, we analyzed loci containing the maf genes in N. meningitidis and N. gonorrhoeae and proposed a novel uniform nomenclature for maf genomic islands (MGIs). We demonstrated that mafB genes encode secreted polymorphic toxins and that genes immediately downstream of mafB encode a specific immunity protein (MafI). We focused on a MafB toxin found in meningococcal strain NEM8013 and characterized its EndoU ribonuclease activity. maf genes represent 2% of the genome of pathogenic Neisseria, and are virtually absent from non-pathogenic species, thus arguing for an important biological role. Indeed, we showed that overexpression of one of the four MafB toxins of strain NEM8013 provides an advantage in competition assays, suggesting a role of maf loci in niche adaptation.


Assuntos
Toxinas Bacterianas/genética , Neisseria/genética , Neisseria/patogenicidade , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Ilhas Genômicas/genética , Humanos , Dados de Sequência Molecular , Família Multigênica , Neisseria/metabolismo , Organismos Geneticamente Modificados , Estrutura Terciária de Proteína , Via Secretória , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Stem Cell Res ; 76: 103350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387169

RESUMO

Human induced Pluripotent Stem Cells (hiPSCs) represent an invaluable source of primary cells to investigate development, establish cell and disease models, provide material for regenerative medicine and allow more physiological high-content screenings. Here, we generated three healthy hiPSC control lines - IPi001-A/B/C - from primary amniotic fluid cells (AFCs), an infrequently used source of cells, which can be readily obtained from amniocentesis for the prenatal diagnosis of numerous genetic disorders. These AFCs were reprogrammed by non-integrative viral transduction. The resulting hiPSCs displayed normal karyotype and expressed classic pluripotency hallmarks.


Assuntos
Células-Tronco Pluripotentes Induzidas , Gravidez , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular , Diferenciação Celular/fisiologia , Líquido Amniótico/metabolismo , Medicina Regenerativa
3.
NPJ Vaccines ; 9(1): 10, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184681

RESUMO

The receptor-binding domain, region II, of the Plasmodium vivax Duffy binding protein (PvDBPII) binds the Duffy antigen on the reticulocyte surface to mediate invasion. A heterologous vaccine challenge trial recently showed that a delayed dosing regimen with recombinant PvDBPII SalI variant formulated with adjuvant Matrix-MTM reduced the in vivo parasite multiplication rate (PMR) in immunized volunteers challenged with the Thai P. vivax isolate PvW1. Here, we describe extensive analysis of the polyfunctional antibody responses elicited by PvDBPII immunization and identify immune correlates for PMR reduction. A classification algorithm identified antibody features that significantly contribute to PMR reduction. These included antibody titre, receptor-binding inhibitory titre, dissociation constant of the PvDBPII-antibody interaction, complement C1q and Fc gamma receptor binding and specific IgG subclasses. These data suggest that multiple immune mechanisms elicited by PvDBPII immunization are likely to be associated with protection and the immune correlates identified could guide the development of an effective vaccine for P. vivax malaria. Importantly, all the polyfunctional antibody features that correlated with protection cross-reacted with both PvDBPII SalI and PvW1 variants, suggesting that immunization with PvDBPII should protect against diverse P. vivax isolates.

4.
Sci Rep ; 9(1): 15978, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685855

RESUMO

Lipoprotein modification is an essential process in Gram-negative bacteria. The action of three integral membrane proteins that catalyze the transfer of fatty acids derived from membrane phospholipids or cleave the signal peptide of the lipoprotein substrate result in the formation of mature triacylated proteins. Inactivation of the enzymes leads to mis-localization of immature lipoproteins and consequently cell death. Biochemical studies and the development of in vitro assays are challenging due to the fact that the enzymes and substrates are all membrane-embedded proteins difficult to overproduce and purify. Here we describe a sensitive fluorescence-based assay to monitor bacterial apolipoprotein N-acyltransferase activity.


Assuntos
Aciltransferases/metabolismo , Ensaios Enzimáticos , Fluorescência , Proteínas de Membrana/metabolismo , Aciltransferases/química , Proteínas de Bactérias/metabolismo , Química Click , Ativação Enzimática , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala , Proteínas de Membrana/química , Oligopeptídeos/metabolismo , Especificidade por Substrato
5.
iScience ; 20: 292-309, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31605944

RESUMO

CEP55 regulates the final critical step of cell division termed cytokinetic abscission. We report herein that CEP55 contains two NEMO-like ubiquitin-binding domains (UBDs), NOA and ZF, which regulate its function in a different manner. In vitro studies of isolated domains showed that NOA adopts a dimeric coiled-coil structure, whereas ZF is based on a UBZ scaffold. Strikingly, CEP55 knocked-down HeLa cells reconstituted with the full-length CEP55 ubiquitin-binding defective mutants, containing structure-guided mutations either in NOACEP55 or ZFCEP55 domains, display severe abscission defects. In addition, the ZFCEP55 can be functionally replaced by some ZF-based UBDs belonging to the UBZ family, indicating that the essential function of ZFCEP55 is to act as ubiquitin receptor. Our work reveals an unexpected role of CEP55 in non-degradative ubiquitin signaling during cytokinetic abscission and provides a molecular basis as to how CEP55 mutations can lead to neurological disorders such as the MARCH syndrome.

6.
Nat Commun ; 7: 12629, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27586688

RESUMO

The NF-κB pathway has critical roles in cancer, immunity and inflammatory responses. Understanding the mechanism(s) by which mutations in genes involved in the pathway cause disease has provided valuable insight into its regulation, yet many aspects remain unexplained. Several lines of evidence have led to the hypothesis that the regulatory/sensor protein NEMO acts as a biological binary switch. This hypothesis depends on the formation of a higher-order structure, which has yet to be identified using traditional molecular techniques. Here we use super-resolution microscopy to reveal the existence of higher-order NEMO lattice structures dependent on the presence of polyubiquitin chains before NF-κB activation. Such structures may permit proximity-based trans-autophosphorylation, leading to cooperative activation of the signalling cascade. We further show that NF-κB activation results in modification of these structures. Finally, we demonstrate that these structures are abrogated in cells derived from incontinentia pigmenti patients.


Assuntos
Quinase I-kappa B/ultraestrutura , Incontinência Pigmentar/patologia , Microscopia/métodos , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA