Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tectonics ; 37(9): 2887-2914, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31007341

RESUMO

The formation of mountain belts or rift zones is commonly attributed to interactions between plates along their boundaries, but the widely distributed deformation of Asia from Himalaya to the Japan Sea and other back-arc basins is difficult to reconcile with this notion. Through comparison of the tectonic and kinematic records of the last 50 Ma with seismic tomography and anisotropy models, we show that the closure of the former Tethys Ocean and the extensional deformation of East Asia can be best explained if the asthenospheric mantle transporting India northward, forming the Himalaya and the Tibetan Plateau, reaches East Asia where it overrides the westward flowing Pacific mantle and contributes to subduction dynamics, distributing extensional deformation over a 3,000-km wide region. This deep asthenospheric flow partly controls the compressional stresses transmitted through the continent-continent collision, driving crustal thickening below the Himalayas and Tibet and the propagation of strike-slip faults across Asian lithosphere further north and east, as well as with the lithospheric and crustal flow powered by slab retreat east of the collision zone below East and SE Asia. The main shortening direction in the deforming continent between the collision zone and the Pacific subduction zones may in this case be a proxy for the direction of flow in the asthenosphere underneath, which may become a useful tool for studying mantle flow in the distant past. Our model of the India-Asia collision emphasizes the role of asthenospheric flow underneath continents and may offer alternative ways of understanding tectonic processes.

2.
Sci Adv ; 8(37): eabo2397, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112687

RESUMO

Recent thermodynamic and experimental studies have suggested that volatile organic compounds (e.g., methane, formate, and acetate) can be produced and stabilized in subduction zones, potentially playing an important role in the deep carbon cycle. However, field evidence for the high-pressure production and storage of solid organic compounds is missing. Here, we examine forearc serpentinite clasts recovered by drilling mud volcanoes above the Mariana subduction zone. Notable correlations between carbon and iron stable-isotope signatures and fluid-mobile element (B, As and Sb) concentrations provide evidence for the percolation of slab-derived CO2-rich aqueous fluids through the forearc mantle. The presence of carbonaceous matter rich in aliphatic moieties within high-temperature clasts (>350°C) demonstrates that molecular hydrogen production associated with forearc serpentinization is an efficient mechanism for the reduction and conversion of slab-derived CO2-rich fluids into solid organic compounds. These findings emphasize the need to consider the forearc mantle as an important reservoir of organic carbon on Earth.

3.
Nat Commun ; 7: 13794, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982033

RESUMO

Subduction zones modulate the chemical evolution of the Earth's mantle. Water and volatile elements in the slab are released as fluids into the mantle wedge and this process is widely considered to result in the oxidation of the sub-arc mantle. However, the chemical composition and speciation of these fluids, which is critical for the mobility of economically important elements, remain poorly constrained. Sulfur has the potential to act both as oxidizing agent and transport medium. Here we use zinc stable isotopes (δ66Zn) in subducted Alpine serpentinites to decipher the chemical properties of slab-derived fluids. We show that the progressive decrease in δ66Zn with metamorphic grade is correlated with a decrease in sulfur content. As existing theoretical work predicts that Zn-SO42- complexes preferentially incorporate heavy δ66Zn, our results provide strong evidence for the release of oxidized, sulfate-rich, slab serpentinite-derived fluids to the mantle wedge.

4.
Geochem Geophys Geosyst ; 15(11): 4203-4216, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26321881

RESUMO

We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs ), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. KEY POINTS: Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA