Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Dermatol ; 190(5): 740-750, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38214572

RESUMO

BACKGROUND: Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues to rise worldwide. If diagnosed at an early stage, it has an excellent prognosis, but mortality increases significantly at advanced stages after distant spread. Unfortunately, early detection of aggressive melanoma remains a challenge. OBJECTIVES: To identify novel blood-circulating biomarkers that may be useful in the diagnosis of MM to guide patient counselling and appropriate disease management. METHODS: In this study, 105 serum samples from 26 healthy patients and 79 with MM were analysed using an untargeted approach by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to compare the metabolomic profiles of both conditions. Resulting data were subjected to both univariate and multivariate statistical analysis to select robust biomarkers. The classification model obtained from this analysis was further validated with an independent cohort of 12 patients with stage I MM. RESULTS: We successfully identified several lipidic metabolites differentially expressed in patients with stage I MM vs. healthy controls. Three of these metabolites were used to develop a classification model, which exhibited exceptional precision (0.92) and accuracy (0.94) when validated on an independent sample. CONCLUSIONS: These results demonstrate that metabolomics using LC-HRMS is a powerful tool to identify and quantify metabolites in bodily fluids that could serve as potential early diagnostic markers for MM.


Melanoma is a type of skin cancer that can be deadly if it is not detected at an early stage. Unfortunately, the early detection of melanoma is challenging. Our team has developed a model that could be used to predict whether a person has stage I malignant melanoma based on blood serum analysis. The model was trained on data from a group of people with melanoma and it was found to be accurate in predicting melanoma at an early stage. This means that the model could be used to identify people who have skin cancer before it progresses and becomes more complicated to treat. Although the researchers recommend that further studies are conducted to validate the model in a larger population of people, this research could help with the early diagnosis of melanoma and work toward improving survival rates.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Projetos Piloto , Detecção Precoce de Câncer , Metabolômica , Biomarcadores , Espectrometria de Massa com Cromatografia Líquida
2.
Bioorg Med Chem ; 111: 117849, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39068873

RESUMO

The search for new agents targeting different forms of cell death is an important research focus for developing new and potent antitumor therapies. As a contribution to this endeavor, we have designed and synthesized a series of new substituted 3,4-dihydro-2H-1,4-benzoxazine derivatives. These compounds have been evaluated for their efficacy against MCF-7 breast cancer and HCT-116 colon cancer cell lines. Overall, substituting this heterocycle led to improved antiproliferative activity compared to the unsubstituted derivative 1. The most active compounds, 2b and 4b, showed IC50 values of 2.27 and 3.26 µM against MCF-7 cells and 4.44 and 7.63 µM against HCT-116 cells, respectively. To investigate the mechanism of action of the target compounds, the inhibition profile of 8 kinases involved in cell signaling was studied highlighting residual activity on HER2 and JNK1 kinases. 2b and 4b showed a consistent binding mode to both receptor kinases, establishing significant interactions with known and catalytically important domains and residues. Compounds 2b and 4b exhibit potent cytotoxic activity by disrupting cell membrane permeability, likely triggering both inflammatory and non-inflammatory cell death mechanisms. This dual capability increases their versatility in the treatment of different stages or types of tumors, providing greater flexibility in clinical applications.

3.
J Enzyme Inhib Med Chem ; 36(1): 1553-1563, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34251942

RESUMO

A series of 11 new substituted 1,5-dihydro-4,1-benzoxazepine derivatives was synthesised to study the influence of the methyl group in the 1-(benzenesulphonyl) moiety, the replacement of the purine by the benzotriazole bioisosteric analogue, and the introduction of a bulky substituent at position 6 of the purine, on the biological effects. Their inhibition against isolated HER2 was studied and the structure-activity relationships have been confirmed by molecular modelling studies. The most potent compound against isolated HER2 is 9a with an IC50 of 7.31 µM. We have investigated the effects of the target compounds on cell proliferation. The most active compound (7c) against all the tumour cell lines studied (IC50 0.42-0.86 µM) does not produce any modification in the expression of pro-caspase 3, but increases the caspase 1 expression, and promotes pyroptosis.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284513

RESUMO

Currently, there is increasing evidence linking diabetes mellitus (especially type 2 diabetes mellitus) with carcinogenesis through various biological processes, such as fat-induced chronic inflammation, hyperglycemia, hyperinsulinemia, and angiogenesis. Chemotherapeutic agents are used in the treatment of cancer, but in most cases, patients develop resistance. Phenformin, an oral biguanide drug used to treat type 2 diabetes mellitus, was removed from the market due to a high risk of fatal lactic acidosis. However, it has been shown that phenformin is, with other biguanides, an authentic tumor disruptor, not only by the production of hypoglycemia due to caloric restriction through AMP-activated protein kinase with energy detection (AMPK) but also as a blocker of the mTOR regulatory complex. Moreover, the addition of phenformin eliminates resistance to antiangiogenic tyrosine kinase inhibitors (TKI), which prevent the uncontrolled metabolism of glucose in tumor cells. In this review, we evidence the great potential of phenformin as an anticancer agent. We thoroughly review its mechanism of action and clinical trial assays, specially focusing on current challenges and future perspectives of this promising drug.


Assuntos
Antineoplásicos/farmacologia , Fenformin/farmacologia , Animais , Diabetes Mellitus Tipo 2/complicações , Humanos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Fenformin/química , Fatores de Risco
5.
Int J Mol Sci ; 19(7)2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29966369

RESUMO

Ovarian cancer is the most lethal gynecological malignancy in developed countries. This is due to the lack of specific symptoms that hinder early diagnosis and to the high relapse rate after treatment with radical surgery and chemotherapy. Hence, novel therapeutic modalities to improve clinical outcomes in ovarian malignancy are needed. Progress in gene therapy has allowed the development of several strategies against ovarian cancer. Most are focused on the design of improved vectors to enhance gene delivery on the one hand, and, on the other hand, on the development of new therapeutic tools based on the restoration or destruction of a deregulated gene, the use of suicide genes, genetic immunopotentiation, the inhibition of tumour angiogenesis, the alteration of pharmacological resistance, and oncolytic virotherapy. In the present manuscript, we review the recent advances made in gene therapy for ovarian cancer, highlighting the latest clinical trials experience, the current challenges and future perspectives.


Assuntos
Terapia Genética/métodos , Neoplasias Ovarianas/terapia , Feminino , Vetores Genéticos/genética , Humanos , Recidiva Local de Neoplasia/genética , Terapia Viral Oncolítica/métodos , Neoplasias Ovarianas/genética
6.
Biomacromolecules ; 14(12): 4248-59, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24134122

RESUMO

Lipid nanocapsules (LNC) are usually developed as nanocarriers for lipophilic drug delivery. The surface characteristics of these colloidal particles are determinant for a controlled and directed delivery to target tissues with specific markers. We report the development of immuno-nanocapsules, in which some antibody molecules with different immuno-specificity are conjugated to the nanocapsule surface, offering the standardization of a simple method to obtain vectorized nanosystems with specific recognition properties. Nanocapsules were prepared by a solvent-displacement technique, producing an oily core coated by a functional shell of different biocompatible molecules and surface carboxylic groups. Three different antibodies (one a specific HER2 oncoprotein antibody) were conjugated with these nanoparticles by the carbodiimide method, which allows the covalent immobilization of protein molecules through carboxylic surface groups. The immuno-nanocapsules were completely characterized physico-chemically via electrokinetic and colloidal stability experiments, confirming the correct immobilization of these antibody molecules on the colloidal nanoparticles. Also, additional immunological analyses verified that these IgG-LNC complexes showed the expected specific immuno-response. Finally, different healthy and tumoral breast-cell lines were cultured in vitro with Nile-Red-loaded and docetaxel-loaded HER2 immuno-nanocapsules. The results indicate that our immuno-nanocapsules can increase their uptake in HER2 overexpressing tumoral cell lines.


Assuntos
Anticorpos Monoclonais Humanizados/química , Antineoplásicos/química , Nanocápsulas/química , Óleos de Plantas/química , Receptor ErbB-2/metabolismo , Taxoides/química , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama , Coloides , Ácido Desoxicólico/química , Docetaxel , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Células MCF-7 , Azeite de Oliva , Tamanho da Partícula , Poloxâmero/química , Taxoides/metabolismo , Taxoides/farmacologia , Trastuzumab
7.
Int J Mol Sci ; 14(8): 16600-16, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23941782

RESUMO

Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cloreto de Cádmio/farmacologia , Interações Medicamentosas , Fluoruracila/farmacologia , Antimetabólitos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Caspase 8/biossíntese , Caspase 9/biossíntese , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A1/biossíntese , Ciclina D1/biossíntese , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese
8.
Sci Rep ; 13(1): 790, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646714

RESUMO

Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV-Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10-3 M) in 5 min and malachite green (10-3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications.


Assuntos
Cuphea , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Vermelho Congo , Testes de Sensibilidade Microbiana , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Cancers (Basel) ; 15(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509327

RESUMO

Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma.

10.
Int J Mol Sci ; 13(4): 4906-4919, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606019

RESUMO

In the field of cancer therapy, lipid nanocapsules based on a core-shell structure are promising vehicles for the delivery of hydrophobic drugs such as docetaxel. The main aim of this work was to evaluate whether docetaxel-loaded lipid nanocapsules improved the anti-tumor effect of free docetaxel in breast cancer cells. Three docetaxel-loaded lipid nanocapsules were synthesized by solvent displacement method. Cytotoxic assays were evaluated in breast carcinoma (MCF-7) cells treated by the sulforhodamine B colorimetric method. Cell cycle was studied by flow cytometry and Annexin V-FITC, and apoptosis was evaluated by using propidium iodide assays. The anti-proliferative effect of docetaxel appeared much earlier when the drug was encapsulated in lipid nanoparticles than when it was free. Docetaxel-loaded lipid nanocapsules significantly enhanced the decrease in IC(50) rate, and the treated cells evidenced apoptosis and a premature progression of the cell cycle from G(1) to G(2)-M phase. The chemotherapeutic effect of free docetaxel on breast cancer cells is improved by its encapsulation in lipid nanocapsules. This approach has the potential to overcome some major limitations of conventional chemotherapy and may be a promising strategy for future applications in breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Nanocápsulas/uso terapêutico , Taxoides/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Taxoides/administração & dosagem
11.
Int J Mol Sci ; 13(2): 2405-2424, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22408461

RESUMO

Lipid nanocapsules (LNC) based on a core-shell structure consisting of an oil-filled core with a surrounding polymer layer are known to be promising vehicles for the delivery of hydrophobic drugs in the new therapeutic strategies in anti-cancer treatments. The present work has been designed as basic research about different LNC systems. We have synthesized-and physico-chemically characterized-three different LNC systems in which the core was constituted by olive oil and the shell by different phospholipids (phosphatidyl-serine or lecithin) and other biocompatible molecules such as Pluronic(®) F68 or chitosan. It is notable that the olive-oil-phosphatidyl-serine LCN is a novel formulation presented in this work and was designed to generate an enriched carboxylic surface. This carboxylic layer is meant to link specific antibodies, which could facilitate the specific nanocapsule uptake by cancer cells. This is why nanoparticles with phosphatidyl-serine in their shell have also been used in this work to form immuno-nanocapsules containing a polyclonal IgG against a model antigen (C-reactive protein) covalently bounded by means of a simple and reproducible carbodiimide method. An immunological study was made to verify that these IgG-LNC complexes showed the expected specific immune response. Finally, a preliminary in vitro study was performed by culturing a breast-carcinoma cell line (MCF-7) with Nile-Red-loaded LNC. We found that these cancer cells take up the fluorescent Nile- Red molecule in a process dependent on the surface properties of the nanocarriers.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanocápsulas/química , Proteína C-Reativa/imunologia , Química Farmacêutica , Portadores de Fármacos/síntese química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Humanos , Imunoconjugados/química , Imunoglobulina G/administração & dosagem , Células MCF-7 , Oxazinas/administração & dosagem , Propriedades de Superfície
12.
Pharmaceutics ; 14(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631686

RESUMO

There is a global need to discover effective anti-cancerous compounds from natural sources. Cultivated wheat cells can be a valuable source of non-toxic or low toxic plant-derived polysaccharides. In this study, we evaluated the anti-cancer ability of seven fractions of wheat cell culture polysaccharides (WCCPSs) in the HCT-116 colon cancer cell line. Almost all (6/7) fractions had an inhibitory effect on the proliferation of colon cancer cells, and two fractions (A-b and A-f) had considerable therapeutic indexes. The WCCPS fractions induced cell cycle arrest in the G1 phase and induced different rates of apoptosis (≤48%). Transmission and scanning electron microscopy revealed that WCCPS fractions caused apoptotic changes in the nucleus and cytoplasm, including damage to mitochondria and external morphological signs of apoptosis. In addition, the WCCPSs induced an increase in the levels of Bax, cytochrome c, and caspases 8 and 3, indicating that cell death progressed through intrinsic and extrinsic pathways of apoptosis. Furthermore, some fractions caused a significant decrease of c-Myc, b-catenin, NFkB2, and HCAM (CD 44) levels, indicating enhanced cell differentiation. Thus, for the first time, our results provide a proof of concept of the anti-cancer capacity of WCCPS fractions in colorectal cancer.

13.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457965

RESUMO

This work explores the preparation of luminescent and biomimetic Tb3+-doped citrate-functionalized carbonated apatite nanoparticles. These nanoparticles were synthesized employing a citrate-based thermal decomplexing precipitation method, testing a nominal Tb3+ doping concentration between 0.001 M to 0.020 M, and a maturation time from 4 h to 7 days. This approach allowed to prepare apatite nanoparticles as a single hydroxyapatite phase when the used Tb3+ concentrations were (i) ≤ 0.005 M at all maturation times or (ii) = 0.010 M with 4 h of maturation. At higher Tb3+ concentrations, amorphous TbPO4·nH2O formed at short maturation times, while materials consisting of a mixture of carbonated apatite prisms, TbPO4·H2O (rhabdophane) nanocrystals, and an amorphous phase formed at longer times. The Tb3+ content of the samples reached a maximum of 21.71 wt%. The relative luminescence intensity revealed an almost linear dependence with Tb3+ up to a maximum of 850 units. Neither pH, nor ionic strength, nor temperature significantly affected the luminescence properties. All precipitates were cytocompatible against A375, MCF7, and HeLa carcinogenic cells, and also against healthy fibroblast cells. Moreover, the luminescence properties of these nanoparticles allowed to visualize their intracellular cytoplasmic uptake at 12 h of treatment through flow cytometry and fluorescence confocal microscopy (green fluorescence) when incubated with A375 cells. This demonstrates for the first time the potential of these materials as nanophosphors for living cell imaging compatible with flow cytometry and fluorescence confocal microscopy without the need to introduce an additional fluorescence dye. Overall, our results demonstrated that Tb3+-doped citrate-functionalized apatite nanoparticles are excellent candidates for bioimaging applications.

14.
Cytotherapy ; 13(2): 193-200, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20662611

RESUMO

BACKGROUND AIMS: Diabetes type I is an autoimmune disease characterized by the destruction of pancreatic insulin-producing (beta-) cells and resulting in external insulin dependence for life. Islet transplantation represents a potential treatment for diabetes but there is currently a shortage of suitable organs donors. To augment the supply of donors, different strategies are required to provide a potential source of beta-cells. These sources include embryonic and adult stem cells as well as differentiated cell types. The main goal of this study was to induce the transdifferentiation (or conversion of one type cell to another) of human hepatoma cells (HepG2 cells) to insulin-expressing cells based on the exposure of HepG2 cells to an extract of rat insulinoma cells (RIN). METHODS: HepG2 cells were first transiently permeabilized with Streptolysin O and then exposed to a cell extract obtained from RIN cells. Following transient exposure to the RIN extract, the HepG2 cells were cultured for 3 weeks. RESULTS: Acquisition of the insulin-producing cell phenotype was determined on the basis of (i) morphologic and (ii) ultrastructural observations, (iii) immunologic detection and (iv) reverse transcription (RT)-polymerase chain reaction (PCR) analysis. CONCLUSIONS: This study supports the use of cell extract as a feasible method for achieve transdifferentiation of hepatic cells to insulin-producing cells.


Assuntos
Transdiferenciação Celular , Células Hep G2/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Insulina/biossíntese , Insulinoma , Animais , Proteínas de Bactérias , Extratos Celulares/farmacologia , Células Cultivadas , Imunofluorescência , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Permeabilidade , Fenótipo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estreptolisinas
15.
Int J Mol Sci ; 12(5): 3303-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21686186

RESUMO

Nanotechnology, along with related concepts such as nanomaterials, nanostructures and nanoparticles, has become a priority area for scientific research and technological development. Nanotechnology, i.e., the creation and utilization of materials and devices at nanometer scale, already has multiple applications in electronics and other fields. However, the greatest expectations are for its application in biotechnology and health, with the direct impact these could have on the quality of health in future societies. The emerging discipline of nanomedicine brings nanotechnology and medicine together in order to develop novel therapies and improve existing treatments. In nanomedicine, atoms and molecules are manipulated to produce nanostructures of the same size as biomolecules for interaction with human cells. This procedure offers a range of new solutions for diagnoses and "smart" treatments by stimulating the body's own repair mechanisms. It will enhance the early diagnosis and treatment of diseases such as cancer, diabetes, Alzheimer's, Parkinson's and cardiovascular diseases. Preventive medicine may then become a reality.


Assuntos
Nanomedicina/tendências , Técnicas Biossensoriais , Dendrímeros/química , Sistemas de Liberação de Medicamentos , Ouro/química , Dispositivos Lab-On-A-Chip , Lipossomos , Nanopartículas Metálicas/química , Micelas , Nanomedicina/métodos , Nanoestruturas/química , Pontos Quânticos/química , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
16.
Int J Mol Sci ; 12(11): 7445-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174609

RESUMO

Breast cancer research has developed rapidly in the past few decades, leading to longer survival times for patients and opening up the possibility of developing curative treatments for advanced breast cancer. Our increasing knowledge of the biological pathways associated with the progression and development of breast cancer, alongside the failure of conventional treatments, has prompted us to explore gene therapy as an alternative therapeutic strategy. We previously reported that gef gene from E. coli has shown considerable cytotoxic effects in breast cancer cells. However, its action mechanism has not been elucidated. Indirect immunofluorescence technique using flow cytometry and immunocytochemical analysis were used to detect breast cancer markers: estrogen (ER) and progesterone (PR) hormonal receptors, human epidermal growth factor receptor-2 proto-oncogene (c-erbB-2), ki-67 antigen and p53 protein. gef gene induces an increase in ER and PR expressions and a decrease in ki-67 and c-erbB-2 gene expressions, indicating a better prognosis and response to treatment and a longer disease-free interval and survival. It also increased p53 expression, suggesting that gef-induced apoptosis is regulated by a p53-mediated signaling pathway. These findings support the hypothesis that the gef gene offers a new approach to gene therapy in breast cancer.


Assuntos
Apoptose/genética , Neoplasias da Mama/diagnóstico , Proteínas de Ligação a DNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , Imuno-Histoquímica , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Células MCF-7 , Prognóstico , Proto-Oncogene Mas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Nanomaterials (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066096

RESUMO

Cancer is one of the most prevalent diseases in the world and requires new therapies for its treatment. In this context, the biosynthesis of silver nanoparticles (AgNPs) has been developed to treat different types of tumors. The Annona muricata plant is known for having anticancer activity. Its main compounds present in the leaves, stems and skin, allowing for its use as reducing agents. In this manuscript, AgNPs with leaf extract (AgNPs-LE) and fruit peel extract (AgNPs-PE) of A. muricata were biosynthesized obtaining an average nanoparticle diameter sizes smaller than 50 nm, being 19.63 ± 3.7 nm and 16.56 ± 4.1 nm, and with a surface plasmonic resonance (SPR) at 447 and 448 nm, respectively. The lactone functional group present in the LE and PE extracts was identified by the FTIR technique. The behavior and antiproliferation activity of AgNPs-LE and AgNPs-PE were evaluated in breast, colon and melanoma cancer cell lines. Our results showed that Annona muricata fruit peel, which is a waste product, has an antitumor effect more potent than leaf extract. This difference is maintained with AgNPs where the destruction of cancer cells was, for the first time, achieved using concentrations that do not exceed 3 µg/mL with a better therapeutic index in the different tumor strains. In conclusion, we present a low-cost one-step experimental setup to generate AgNPs-PE whose in-vitro biocompatibility and powerful therapeutic effect make it a very attractive tool worth exploiting.

18.
Mol Oncol ; 15(2): 407-428, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33052601

RESUMO

Malignant melanoma (MM) is the most aggressive and life-threatening form of skin cancer. It is characterized by an extraordinary metastasis capacity and chemotherapy resistance, mainly due to melanoma cancer stem cells (CSCs). To date, there are no suitable clinical diagnostic, prognostic or predictive biomarkers for this neoplasia. Therefore, there is an urgent need for new MM biomarkers that enable early diagnosis and effective disease monitoring. Exosomes represent a novel source of biomarkers since they can be easily isolated from different body fluids. In this work, a primary patient-derived MM cell line enriched in CSCs was characterized by assessing the expression of specific markers and their stem-like properties. Exosomes derived from CSCs and serums from patients with MM were characterized, and their metabolomic profile was analysed by high-resolution mass spectrometry (HRMS) following an untargeted approach and applying univariate and multivariate statistical analyses. The aim of this study was to search potential biomarkers for the diagnosis of this disease. Our results showed significant metabolomic differences in exosomes derived from MM CSCs compared with those from differentiated tumour cells and also in serum-derived exosomes from patients with MM compared to those from healthy controls. Interestingly, we identified similarities between structural lipids differentially expressed in CSC-derived exosomes and those derived from patients with MM such as the glycerophosphocholine PC 16:0/0:0. To our knowledge, this is the first metabolomic-based study aimed at characterizing exosomes derived from melanoma CSCs and patients' serum in order to identify potential biomarkers for MM diagnosis. We conclude that metabolomic characterization of CSC-derived exosomes sets an open door to the discovery of clinically useful biomarkers in this neoplasia.


Assuntos
Exossomos/metabolismo , Melanoma/metabolismo , Metabolômica , Células-Tronco Neoplásicas/metabolismo , Neoplasias Cutâneas/metabolismo , Linhagem Celular Tumoral , Exossomos/patologia , Humanos , Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia
19.
Cytotherapy ; 12(3): 332-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20230311

RESUMO

BACKGROUND AIMS: The goal was to induce the transdifferentiation (or conversion) of human adipose-derived stem cells to cardiomyocytes using an intracellular extract obtained from adult human heart tissue. METHODS: Human adult stem cells from lipoaspirates were transiently permeabilized, exposed to human atrial extracts and allowed to recover in culture. RESULTS: After 21 days, the cells acquired a cardiomyocyte phenotype, as demonstrated by morphologic changes (appearance of binucleate, striated cells and branching fibers), immunofluorescence detection of cardiac-specific markers (connexin-43, sarcomeric alpha-actinin, cardiac troponin I and T, and desmin) and the presence of cardiomyocyte-related genes analyzed by reverse transcription-polymerase chain reaction (cardiac myosin light chain 1, alpha-cardiac actin, cardiac troponin T and cardiac beta-myosin). CONCLUSIONS: We have demonstrated for the first time that adult cardiomyocytes obtained from human donors retain the capacity to induce cardiomyocyte differentiation of mesenchymal stromal cells. The use of autologous extracts for reprogramming adult stem cells may have potential therapeutic implications for treating heart disease.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular/fisiologia , Miocárdio , Miócitos Cardíacos/fisiologia , Tecido Adiposo/citologia , Adulto , Células-Tronco Adultas/citologia , Biomarcadores/metabolismo , Linhagem da Célula , Transdiferenciação Celular , Células Cultivadas , Átrios do Coração/citologia , Humanos , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia
20.
Exp Dermatol ; 19(4): 363-71, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19645856

RESUMO

Novel treatment modalities, including gene therapy, are needed for patients with advanced melanoma. We evaluated whether the gef gene, a suicide gene from Escherichia coli, had a significant cytotoxic impact on melanoma in vivo. First, we used a non-viral gene delivery approach (pcDNA3.1/gef) to study the inhibition of melanoma cells (B16-F10) proliferation in vitro. Secondly, we used direct intra-tumoral injection of pcDNA3.1/gef complexed with jetPEI to deliver gef cDNA to rapidly growing murine melanomas. We demonstrated that gef gene not only has an antiproliferative effect on B16-F10 cells in vitro, but also induces an important decrease in melanoma tumor volume (77.7% in 8 days) in vivo. Interestingly, after gef gene treatment, melanoma showed apoptosis activation associated with the mitochondrial pathway, suggesting that the induction of this death mechanism may be an effective strategy for its treatment. Our in vivo results indicate that gef gene might become a suitable therapeutic strategy for patients with advanced melanoma.


Assuntos
Apoptose/fisiologia , Toxinas Bacterianas/uso terapêutico , Proteínas de Escherichia coli/uso terapêutico , Terapia Genética/métodos , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Proteínas de Membrana/uso terapêutico , Mitocôndrias/fisiologia , Animais , Toxinas Bacterianas/genética , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Escherichia coli/genética , Feminino , Expressão Gênica/genética , Marcação In Situ das Extremidades Cortadas , Melanoma Experimental/metabolismo , Melanoma Experimental/ultraestrutura , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Indução de Remissão/métodos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA