Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889657

RESUMO

In the current study, we propose a simple hydrothermal pathway to synthesize nano-structured Mg(OH)2 after application of thermal decomposition followed by hydration of commercial minerals based on hydromagnesite and huntite. The synthesis of nano-materials is performed without the use of any catalyst. The effect of decomposition temperature on the hydrothermal synthesis of Mg(OH)2 is extensively studied. It is shown that the morphology of resulting structures consists typically of particles ~200 nm in diameter and ~10 nm in thickness. Study of the structure at the molecular level designates the composition and supports the nano-sized characteristics of the produced materials. The associated thermal properties combined with the corresponding optical properties suggest that the material may be used as a flame retardant filler with enhanced transparency. In this concept, the flame retardancy of composite coatings containing the produced nano-sized Mg(OH)2 was examined in terms of limiting oxygen index (LOI), i.e., the minimum concentration of oxygen that just supports flaming combustion.

2.
J Am Chem Soc ; 133(26): 10155-60, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21612291

RESUMO

The Horner method was used to synthesize random copolymers of poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) that incorporated different backbone-directing monomers. Single-molecule polarization absorption studies of these new polymers demonstrate that defects that preserve the linear backbone of PPV-type polymers assume the highly anisotropic configurations found in defect-free MEH-PPV. Rigid defects that are bent lower the anisotropy of the single chain, and saturated defects that provide rotational freedom for the chain backbone allow for a wide variety of possible configurations. Molecular dynamics simulations of model defect PPV oligomers in solution demonstrate that defect-free and linearly defected oligomers remain extended while the bent and saturated defects tend toward more folded, compact structures.

3.
J Phys Chem B ; 110(29): 14215-20, 2006 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16854122

RESUMO

This paper investigates the influence of polymer molecular weight (M(W)) on the chemical modifications of poly(methyl methacrylate), PMMA, and polystyrene, PS, films doped with iodonaphthalene (NapI) and iodophenanthrene (PhenI), following irradiation at 248 nm (KrF excimer laser, 20 ns fwhm and hybrid excimer-dye laser, 500 fs fwhm) and at 308 nm (XeCl excimer laser, 30 ns fwhm). The changes of intensity and position of the polymer Raman bands upon irradiation provide information on cleavage of the polymer bonds. Degradation of PMMA, which is a weak absorbing system at 248 nm, occurs to a higher extent in the case of a larger M(W), giving rise to the creation of unsaturation centers and to degradation products. For highly absorbing PS, no degradation is observed upon irradiation with a KrF laser. Consistently irradiating doped PS at 308 nm, where the absorption is low, induces degradation of the polymer. Results provide direct support for the bulk photothermal model, according to which ejection requires a critical number of broken bonds. In the case of irradiation of doped PMMA with pulses of 248 nm and 500 fs, neither degradation nor dependence with polymer M(W) are observed, indicating that mechanisms involved in the femtosecond laser ablation differ from those operating in the case of nanosecond laser ablation. Participation of multiphoton/avalanche processes is proposed.

4.
J Phys Chem B ; 110(33): 16452-8, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913776

RESUMO

This work investigates the effect of polymer molecular weight (M(W)) on the surface morphology of poly(methyl methacrylate) (PMMA) and polystyrene (PS) films doped with iodonaphthalene (NapI) and iodophenanthrene (PhenI) following irradiation in air at 248 nm. In agreement with previous studies, irradiation of PMMA at 248 nm results in surface swelling and bubble formation within the irradiated bulk. Most importantly, the size of bubbles varies sensitively for the different M(W) values, with larger bubbles being formed for the low M(W) systems. Nevertheless, the maximum swelling attains higher values for the high M(W) values (when compared at the corresponding ablation threshold of the systems). Real-time monitoring of transmission of a probing beam shows that morphological changes last longer in the low M(W) polymer. Melting, consistent with a thermal mechanism, occurs, and enough evidence is gathered to provide direct support for the bulk photothermal model, according to which ejection requires that a critical number of bonds is broken. In particular, the observed different morphological effects can be ascribed to the interplay of two factors, namely, of the much more efficient decomposition of the low M(W) polymer to gaseous products and of the dependence of the mechanical polymer properties on M(W). For PS at 308 nm, the changes parallel the ones for PMMA at 248 nm. In contrast, at the strongly absorbed 248 nm, the morphological processes in PS show a less dramatic dependence on M(W). In all, these results are of direct importance for the optimization of laser processing schemes and applications (e.g., tissue processing, laser deposition, laser restoration, etc.).

5.
Polymers (Basel) ; 8(5)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979283

RESUMO

A novel concept for the use of an immiscible and non-meltable polymer, such as sodium polystyrene sulfonate (PSSNa), in order to prepare polyethylene non-woven breathable membranes is described. Membranes were fabricated by melt compounding of properly functionalized PE (P(E-co-AA)) and PSSNa (P(SSNa-co-GMA)) copolymers in the presence of water soluble polyethylene glycol (PEG). The inability of PSSNa derivatives to be melted was overcome by using PEG, which was easily meltable thus inducing PSSNa processability improvement. PEG was removed after membrane fabrication and therefore also acted as a porogen. Carbon nanotubes, functionalized with PSSNa moieties or alkyl groups, were also incorporated in the membranes with the aim of improving the porous connectivity and increasing the water vapor transmission rate. The morphology of the membranes was investigated through Scanning Electron Microscopy (SEM). Water vapor transmission rate (permeation) (WVTR) measurements for the porous membranes showed increased values in comparison with the neat PE ones. A further increase of WVTR was observed with the addition of CNTs to the polymer membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA