Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547241

RESUMO

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Assuntos
Senescência Celular/fisiologia , NAD/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem Celular Tumoral , Senescência Celular/genética , Citosol , Glucose/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , NAD/fisiologia , Oxirredução , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
2.
Nucleic Acids Res ; 50(14): 8331-8348, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871297

RESUMO

SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO-SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.


Assuntos
Corpos Nucleares , Proteína da Leucemia Promielocítica , Proteína SUMO-1 , Zinco , Motivos de Aminoácidos , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Fatores de Transcrição/metabolismo , Zinco/química
3.
Genes Dev ; 27(8): 900-15, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23599344

RESUMO

Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the activation of the senescence mechanism, allowing oncogenic ras to transform primary cells. Mechanistically, ERK-mediated senescence involved the proteasome-dependent degradation of proteins required for cell cycle progression, mitochondrial functions, cell migration, RNA metabolism, and cell signaling. This senescence-associated protein degradation (SAPD) was observed not only in cells expressing ectopic ras, but also in cells that senesced due to short telomeres. Individual RNAi-mediated inactivation of SAPD targets was sufficient to restore senescence in cells transformed by oncogenic ras or trigger senescence in normal cells. Conversely, the anti-senescence viral oncoproteins E1A, E6, and E7 prevented SAPD. In human prostate neoplasms, high levels of phosphorylated ERK were found in benign lesions, correlating with other senescence markers and low levels of STAT3, one of the SAPD targets. We thus identified a mechanism that links aberrant activation of growth signaling pathways and short telomeres to protein degradation and cellular senescence.


Assuntos
Senescência Celular/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteólise , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/enzimologia , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas ras/metabolismo
4.
Genes Dev ; 25(1): 41-50, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205865

RESUMO

The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular/fisiologia , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Proteína da Leucemia Promielocítica , Hiperplasia Prostática/metabolismo , Transporte Proteico
5.
Cytokine ; 82: 80-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26841929

RESUMO

Normal cell proliferation is controlled by a balance between signals that promote or halt cell proliferation. Micro RNAs are emerging as key elements in providing fine signal balance in different physiological situations. Here we report that STAT5 signaling induces the miRNAs miR-19 and miR-155, which potentially antagonize the tumor suppressor axis composed by the STAT5 target gene SOCS1 (suppressor of cytokine signaling-1) and its downstream effector p53. MiRNA sponges against miR-19 or miR-155 inhibit the functions of these miRNAs and potentiate the induction of SOCS1 and p53 in mouse leukemia cells and in human myeloma cells. Adding a catalytic RNA motif of the hammerhead type within miRNA sponges against miR-155 leads to decreased miR-155 levels and increased their ability of inhibiting cell growth and cell migration in myeloma cells. The results indicate that antagonizing miRNA activity can reactivate tumor suppressor pathways downstream cytokine stimulation in tumor cells.


Assuntos
Leucemia/metabolismo , MicroRNAs/metabolismo , Mieloma Múltiplo/metabolismo , RNA Catalítico/biossíntese , RNA Neoplásico/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Leucemia/genética , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Mieloma Múltiplo/genética , Células RAW 264.7 , RNA Catalítico/genética , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína Supressora de Tumor p53/genética
6.
Cytokine ; 82: 70-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26876578

RESUMO

Here we report that the STAT5A transcription factor is a direct p53 transcriptional target gene. STAT5A is well expressed in p53 wild type cells but not in p53-null cells. Inhibition of p53 reduces STAT5A expression. DNA damaging agents such as doxorubicin also induced STAT5A expression in a p53 dependent manner. Two p53 binding sites were mapped in the STAT5A gene and named PBS1 and PBS2; these sites were sufficient to confer p53 responsiveness in a luciferase reporter gene. Chromatin immunoprecipitation experiments revealed that PBS2 has constitutive p53 bound to it, while p53 binding to PBS1 required DNA damage. In normal human breast lobules, weak p53 staining correlated with regions of intense STAT5A staining. Interestingly, in a cohort of triple negative breast tumor tissues there was little correlation between regions of p53 and STAT5A staining, likely reflecting a high frequency of p53 mutations that stabilize the protein in these tumors. We thus reveal an unexpected connection between cytokine signaling and p53.


Assuntos
Neoplasias da Mama/metabolismo , Dano ao DNA , Mutação , Elementos de Resposta , Fator de Transcrição STAT5/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Células MCF-7 , Fator de Transcrição STAT5/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
7.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568812

RESUMO

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Assuntos
Senescência Celular , Cromatina , Humanos , Cromatina/metabolismo , Senescência Celular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fatores de Transcrição/metabolismo , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Oncogenes
8.
Biomedicines ; 12(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791051

RESUMO

Senescent cells, which accumulate with age, exhibit a pro-inflammatory senescence-associated secretory phenotype (SASP) that includes the secretion of cytokines, lipids, and extracellular vesicles (EVs). Here, we established an in vitro model of senescence induced by Raf-1 oncogene in RAW 264.7 murine macrophages (MΦ) and compared them to senescent MΦ found in mouse lung tumors or primary macrophages treated with hydrogen peroxide. The transcriptomic analysis of senescent MΦ revealed an important inflammatory signature regulated by NFkB. We observed an increased secretion of EVs in senescent MΦ, and these EVs presented an enrichment for ribosomal proteins, major vault protein, pro-inflammatory miRNAs, including miR-21a, miR-155, and miR-132, and several mRNAs. The secretion of senescent MΦ allowed senescent murine embryonic fibroblasts to restart cell proliferation. This antisenescence function of the macrophage secretome may explain their pro-tumorigenic activity and suggest that senolytic treatment to eliminate senescent MΦ could potentially prevent these deleterious effects.

9.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428689

RESUMO

Pancreatic cancer (pancreatic ductal adenocarcinoma: PDAC) is one of the most aggressive neoplastic diseases. Metformin use has been associated with reduced pancreatic cancer incidence and better survival in diabetics. Metformin has been shown to inhibit PDAC cells growth and survival, both in vitro and in vivo. However, clinical trials using metformin have failed to reduce pancreatic cancer progression in patients, raising important questions about molecular mechanisms that protect tumor cells from the antineoplastic activities of metformin. We confirmed that metformin acts through inhibition of mitochondrial complex I, decreasing the NAD+/NADH ratio, and that NAD+/NADH homeostasis determines metformin sensitivity in several cancer cell lines. Metabolites that can restore the NAD+/NADH ratio caused PDAC cells to be resistant to metformin. In addition, metformin treatment of PDAC cell lines induced a compensatory NAMPT expression, increasing the pool of cellular NAD+. The NAMPT inhibitor FK866 sensitized PDAC cells to the antiproliferative effects of metformin in vitro and decreased the cellular NAD+ pool. Intriguingly, FK866 combined with metformin increased survival in mice bearing KP4 cell line xenografts, but not in mice with PANC-1 cell line xenografts. Transcriptome analysis revealed that the drug combination reactivated genes in the p53 pathway and oxidative stress, providing new insights about the mechanisms leading to cancer cell death.

10.
Biol Open ; 10(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676390

RESUMO

The origin and evolution of cancer cells is considered to be mainly fueled by DNA mutations. Although translation errors could also expand the cellular proteome, their role in cancer biology remains poorly understood. Tumor suppressors called caretakers block cancer initiation and progression by preventing DNA mutations and/or stimulating DNA repair. If translational errors contribute to tumorigenesis, then caretaker genes should prevent such errors in normal cells in response to oncogenic stimuli. Here, we show that the process of cellular senescence induced by oncogenes, tumor suppressors or chemotherapeutic drugs is associated with a reduction in translational readthrough (TR) measured using reporters containing termination codons withing the context of both normal translation termination or programmed TR. Senescence reduced both basal TR and TR stimulated by aminoglycosides. Mechanistically, the reduction of TR during senescence is controlled by the RB tumor suppressor pathway. Cells that escape from cellular senescence either induced by oncogenes or chemotherapy have an increased TR. Also, breast cancer cells that escape from therapy-induced senescence express high levels of AGO1x, a TR isoform of AGO1 linked to breast cancer progression. We propose that senescence and the RB pathway reduce TR limiting proteome diversity and the expression of TR proteins required for cancer cell proliferation.


Assuntos
Senescência Celular , Biossíntese de Proteínas , Proliferação de Células , Senescência Celular/genética , Mutação
11.
J Biol Chem ; 284(44): 30264-74, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19744931

RESUMO

Ligand-dependent corepressor LCoR was identified as a protein that interacts with the estrogen receptor alpha (ERalpha) ligand binding domain in a hormone-dependent manner. LCoR also interacts directly with histone deacetylase 3 (HDAC3) and HDAC6. Notably, HDAC6 has emerged as a marker of breast cancer prognosis. However, although HDAC3 is nuclear, HDAC6 is cytoplasmic in many cells. We found that HDAC6 is partially nuclear in estrogen-responsive MCF7 cells, colocalizes with LCoR, represses transactivation of estrogen-inducible reporter genes, and augments corepression by LCoR. In contrast, no repression was observed upon HDAC6 expression in COS7 cells, where it is exclusively cytoplasmic. LCoR binds to HDAC6 in vitro via a central domain, and repression by LCoR mutants lacking this domain was attenuated. Kinetic chromatin immunoprecipitation assays revealed hormone-dependent recruitment of LCoR to promoters of ERalpha-induced target genes in synchrony with ERalpha. HDAC6 was also recruited to these promoters, and repeat chromatin immunoprecipitation experiments confirmed the corecruitment of LCoR with ERalpha and with HDAC6. Remarkably, however, although we find evidence for corecruitment of LCoR and ERalpha on genes repressed by the receptor, LCoR and HDAC6 failed to coimmunoprecipitate, suggesting that they are part of distinct complexes on these genes. Although small interfering RNA-mediated knockdown of LCoR or HDAC6 augmented expression of an estrogen-sensitive reporter gene in MCF7 cells, unexpectedly their ablation led to reduced expression of some endogenous estrogen target genes. Taken together, these data establish that HDAC6 can function as a cofactor of LCoR but suggest that they may act in enhance expressing some target genes.


Assuntos
Histona Desacetilases/fisiologia , Proteínas Repressoras/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/fisiologia , Estrogênios , Feminino , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Humanos , Proteínas Nucleares , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo
12.
J Biol Chem ; 284(44): 30275-87, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19744932

RESUMO

Ligand-dependent corepressor LCoR interacts with the progesterone receptor (PR) and estrogen receptor ERalpha in the presence of hormone. LCoR contains tandem N-terminal PXDLS motifs that recruit C-terminal-binding protein (CtBP) corepressors as well as a C-terminal helix-turn-helix (HTH) domain. Here, we analyzed the function of these domains in coregulation of PR- and ERalpha-regulated gene expression. LCoR and CtBP1 colocalize in nuclear bodies that also contain CtBP-interacting protein CtIP and polycomb group repressor complex marker BMI1. Coexpression of CtBP1 in MCF7 or T47D breast cancer cells augmented corepression by LCoR, whereas coexpression of CtIP did not, consistent with direct interaction of LCoR with CtBP1, but not CtIP. The N-terminal region containing the PXDLS motifs is necessary and sufficient for CTBP1 recruitment and essential for full corepression. However, LCoR function was also strongly dependent on the helix-turn-helix domain, as its deletion completely abolished corepression. LCoR, CtBP, and CtIP were recruited to endogenous PR- and ERalpha-stimulated genes in a hormone-dependent manner. Similarly, LCoR was recruited to estrogen-repressed genes, whereas hormone treatment reduced CtBP1 binding. Small interfering RNA-mediated knockdown of LCoR or CtBP1 augmented expression of progesterone- and estrogen-stimulated reporter genes as well as endogenous progesterone-stimulated target genes. In contrast, their ablation had gene-specific effects on ERalpha-regulated transcription that generally led to reduced gene expression. Taken together, these results show that multiple domains contribute to LCoR function. They also reveal a role for LCoR and CtBP1 as attenuators of progesterone-regulated transcription but suggest that LCoR and CtBP1 can act to enhance transcription of some genes.


Assuntos
Regulação da Expressão Gênica , Progesterona/fisiologia , Proteínas Repressoras/fisiologia , Oxirredutases do Álcool/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Receptor alfa de Estrogênio/fisiologia , Humanos , Proteínas Nucleares/metabolismo , Transcrição Gênica
13.
Nucleic Acids Res ; 36(1): 76-93, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17986456

RESUMO

Estrogen receptors (ERs), which mediate the proliferative action of estrogens in breast cancer cells, are ligand-dependent transcription factors that regulate expression of their primary target genes through several mechanisms. In addition to direct binding to cognate DNA sequences, ERs can be recruited to DNA through other transcription factors (tethering), or affect gene transcription through modulation of signaling cascades by non-genomic mechanisms of action. To better characterize the mechanisms of gene regulation by estrogens, we have identified more than 700 putative primary and about 1300 putative secondary target genes of estradiol in MCF-7 cells through microarray analysis performed in the presence or absence of the translation inhibitor cycloheximide. Although siRNA-mediated inhibition of ERalpha expression antagonized the effects of estradiol on up- and down-regulated primary target genes, estrogen response elements (EREs) were enriched only in the vicinity of up-regulated genes. Binding sites for several other transcription factors, including proteins known to tether ERalpha, were enriched in up- and/or down-regulated primary targets. Secondary estrogen targets were particularly enriched in sites for E2F family members, several of which were transcriptionally regulated by estradiol, consistent with a major role of these factors in mediating the effects of estrogens on gene expression and cellular growth.


Assuntos
Neoplasias da Mama/genética , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica , Sítios de Ligação , Linhagem Celular Tumoral , Fatores de Transcrição E2F/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Elementos de Resposta , Fatores de Transcrição/metabolismo
14.
Cancer Res ; 79(13): 3306-3319, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101761

RESUMO

Expression of the suppressor of cytokine signaling-1 (SOCS1) is inactivated in hematopoietic and solid cancers by promoter methylation, miRNA-mediated silencing, and mutations. Paradoxically, SOCS1 is also overexpressed in many human cancers. We report here that the ability of SOCS1 to interact with p53 and regulate cellular senescence depends on a structural motif that includes tyrosine (Y)80 in the SH2 domain of SOCS1. Mutations in this motif are found at low frequency in some human cancers, and substitution of Y80 by a phosphomimetic residue inhibits p53-SOCS1 interaction and its functional consequences, including stimulation of p53 transcriptional activity, growth arrest, and cellular senescence. Mass spectrometry confirmed SOCS1 Y80 phosphorylation in cells, and a new mAb was generated to detect its presence in tissues by IHC. A tyrosine kinase library screen identified the SRC family as Y80-SOCS1 kinases. SRC family kinase inhibitors potentiated the SOCS1-p53 pathway and reinforced SOCS1-induced senescence. Samples from human lymphomas that often overexpress SOCS1 also displayed SRC family kinase activation, constitutive phosphorylation of SOCS1 on Y80, and SOCS1 cytoplasmic localization. Collectively, these results reveal a mechanism that inactivates the SOCS1-p53 senescence pathway and suggest that inhibition of SRC family kinases as personalized treatment in patients with lymphomas may be successful. SIGNIFICANCE: These findings show that SOCS1 phosphorylation by the SRC family inhibits its tumor-suppressive activity, indicating that patients with increased SOCS1 phosphorylation may benefit from SRC family kinase inhibitors.


Assuntos
Senescência Celular , Linfoma/patologia , Domínios e Motivos de Interação entre Proteínas , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/metabolismo , Humanos , Linfoma/genética , Linfoma/metabolismo , Fosforilação , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Domínios de Homologia de src , Quinases da Família src/genética
15.
Aging Cell ; 18(2): e12889, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30614183

RESUMO

Most cancers arise in old individuals, which also accumulate senescent cells. Cellular senescence can be experimentally induced by expression of oncogenes or telomere shortening during serial passage in culture. In vivo, precursor lesions of several cancer types accumulate senescent cells, which are thought to represent a barrier to malignant progression and a response to the aberrant activation of growth signaling pathways by oncogenes (oncogene toxicity). Here, we sought to define gene expression changes associated with cells that bypass senescence induced by oncogenic RAS. In the context of pancreatic ductal adenocarcinoma (PDAC), oncogenic KRAS induces benign pancreatic intraepithelial neoplasias (PanINs), which exhibit features of oncogene-induced senescence. We found that the bypass of senescence in PanINs leads to malignant PDAC cells characterized by gene signatures of epithelial-mesenchymal transition, stem cells, and mitochondria. Stem cell properties were similarly acquired in PanIN cells treated with LPS, and in primary fibroblasts and mammary epithelial cells that bypassed Ras-induced senescence after reduction of ERK signaling. Intriguingly, maintenance of cells that circumvented senescence and acquired stem cell properties was blocked by metformin, an inhibitor of complex I of the electron transport chain or depletion of STAT3, a protein required for mitochondrial functions and stemness. Thus, our studies link bypass of senescence in premalignant lesions to loss of differentiation, acquisition of stemness features, and increased reliance on mitochondrial functions.


Assuntos
Senescência Celular/efeitos dos fármacos , Metformina/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Células-Tronco/citologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Cell Cycle ; 18(6-7): 759-770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30874462

RESUMO

Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.


Assuntos
Ciclo Celular/fisiologia , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular , Senescência Celular/fisiologia , Células HEK293 , Humanos , Fosforilação/fisiologia , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
17.
Sci Rep ; 8(1): 7754, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773808

RESUMO

Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9's ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteoma/análise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Humanos , Conformação Proteica , Sumoilação , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina/química
18.
Nat Cell Biol ; 20(7): 789-799, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29941930

RESUMO

Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence. Genetic analysis revealed that Rb but not p53 was required for the senescence response to altered ribosome biogenesis. Mechanistically, the ribosomal protein S14 (RPS14 or uS11) accumulates in the soluble non-ribosomal fraction of senescent cells, where it binds and inhibits CDK4 (cyclin-dependent kinase 4). Overexpression of RPS14 is sufficient to inhibit Rb phosphorylation, inducing cell cycle arrest and senescence. Here we describe a mechanism for maintaining the senescent cell cycle arrest that may be relevant for cancer therapy, as well as biomarkers to identify senescent cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Neoplasias/metabolismo , Proteína do Retinoblastoma/metabolismo , Ribossomos/metabolismo , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Fosforilação , Ligação Proteica , Precursores de RNA/biossíntese , Precursores de RNA/genética , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , Proteínas de Ligação a RNA , Proteína do Retinoblastoma/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Transdução de Sinais , Fatores de Tempo
19.
Mol Endocrinol ; 19(11): 2685-95, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16002434

RESUMO

1alpha,25-Dihydroxyvitamin D3 [1,25(OH)2D3] regulates calcium homeostasis and controls cellular differentiation and proliferation. The vitamin D receptor (VDR) is a ligand-regulated transcription factor that recognizes cognate vitamin D response elements (VDREs) formed by direct or everted repeats of PuG(G/T)TCA motifs separated by 3 or 6 bp (DR3 or ER6). Here, we have identified direct 1,25(OH)2D3 target genes by combining 35,000+ gene microarrays and genome-wide screens for consensus DR3 and ER6 elements, and DR3 elements containing single nucleotide substitutions. We find that the effect of a nucleotide substitution on VDR binding in vitro does not predict VDRE function in vivo, because substitutions that disrupted binding in vitro were found in several functional elements. Hu133A microarray analyses, performed with RNA from human SCC25 cells treated with 1,25(OH)2D3 and protein synthesis inhibitor cycloheximide, identified more than 900 regulated genes. VDREs lying within -10 to +5 kb of 5'-ends were assigned to 65% of these genes, and VDR binding was confirmed to several elements in vivo. A screen of the mouse genome identified more than 3000 conserved VDREs, and 158 human genes containing conserved elements were 1,25(OH2)D3-regulated on Hu133A microarrays. These experiments also revealed 16 VDREs in 11 of 12 genes induced more than 10-fold in our previous microarray study, five elements in the human gene encoding the epithelial calcium channel TRPV6, as well as novel 1,25(OH2)D3 target genes implicated in regulation of cell cycle progression. The combined approaches used here thus provide numerous insights into the direct target genes underlying the broad physiological actions of 1,25(OH)2D3.


Assuntos
Calcitriol/fisiologia , Regulação da Expressão Gênica , Receptores de Calcitriol/metabolismo , Elemento de Resposta à Vitamina D/genética , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Perfilação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Sequências de Repetição em Tandem , Elemento de Resposta à Vitamina D/fisiologia
20.
Autophagy ; 12(10): 1965-1966, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27532423

RESUMO

Senescence is a natural anticancer defense program disabled in tumor cells. We discovered that deregulated CDK4 (cyclin dependant kinase 4) and CDK6 activities contribute to senescence bypass during tumorigenesis and that their inhibition restores the senescence response in tumor cells. CDK4 and CDK6 phosphorylate RB1/RB, preventing its inhibitory interaction with the E2Fs, the cell cycle transcription factors. However, we also found that CDK4 interacts and phosphorylates the DNMT1 (DNA methyltransferase 1) protein protecting it from macroautophagy/autophagy-mediated protein degradation. This discovery highlights a new epigenetic component of CDK4-CDK6 signaling that could be exploited in cancer treatment.


Assuntos
Autofagia , Senescência Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias/patologia , Proteólise , Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , Humanos , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA