Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pure Appl Chem ; 95(8): 913-920, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38013690

RESUMO

Palladium nanostructures are interesting heterogeneous catalysts because of their high catalytic activity in a vast range of highly relevant reactions such as cross couplings, dehalogenations, and nitro-to-amine reductions. In the latter case, the catalyst Pd@GW (palladium on glass wool) shows exceptional performance and durability in reducing nitrobenzene to aniline under ambient conditions in aqueous solutions. To enhance our understanding, we use a combination of optical and electron microscopy, in-flow single molecule fluorescence, and bench chemistry combined with a fluorogenic system to develop an intimate understanding of Pd@GW in nitro-to-amine reductions. We fully characterize our catalyst in situ using advanced microscopy techniques, providing deep insights into its catalytic performance. We also explore Pd cluster migration on the surface of the support under flow conditions, providing insights into the mechanism of catalysis. We show that even under flow, Pd migration from anchoring sites seems to be minimal over 4 h, with the catalyst stability assisted by APTES anchoring.

2.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298921

RESUMO

Silver nanoparticles have become one of the most commercially and industrially relevant nanomaterials of the 21st century, owing to their potent antibacterial properties, as well as their useful catalytic and optical properties. Although many methods have been explored to produce AgNPs, we favor the photochemical approach using photoinitiators to produce AgNPs, owing to the high degree of control over reaction conditions, and the generation of so-called AgNP 'seeds' that can be used as-is, or as precursors for other silver nanostructures. In this work, we explore the scale-up of AgNP synthesis using flow chemistry and assess the usefulness of a range of industrial Norrish Type 1 photoinitiators in terms of flow compatibility and reaction time, as well as the resulting plasmonic absorption and morphologies. We establish that while all the photoinitiators used were able to generate AgNPs in a mixed aqueous/alcohol system, photoinitiators that generate ketyl radicals showed the greatest promise in terms of reaction times, while also showing greater flow compatibility compared to photoinitiators that generate 𝛼-aminoalkyl and α-hydroxybenzyl radicals. These findings help to establish a guideline for adapting photochemical AgNP syntheses to flow systems, helping to improve the scalability of the method in one of the largest industries in nanomaterial chemistry.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/química
3.
J Mater Chem B ; 11(26): 6114-6122, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37338380

RESUMO

In this work, we outline a simple method for synthesizing decahedral and triangular silver nanoparticles using light to tune particle shape and spectral characteristics. Notably, we were able to generate triangular silver nanoparticles with exceptional absorbance in the near-infrared (NIR) region, with high spectral overlap with the biological window, making them particularly promising for biological applications. We further demonstrate that under complementary LED illumination, these excitable plasmonic particles display exceptional antibacterial properties, several orders of magnitude more potent than similar particles under dark conditions or under illumination that does not match particle absorbance. This work demonstrates the powerful effects that LED lights can have on the antibacterial activity of AgNPs, providing an inexpensive and easily implemented route to unlocking the full potential of AgNPs in photobiological applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA