Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172908

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS: Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS: Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS: Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Viremia/veterinária , Imunidade nas Mucosas , Anticorpos Antivirais , Vacinação/veterinária , Vacinação/métodos , Vacinas Atenuadas
2.
Vet Res ; 48(1): 15, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241868

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) replicates primarily in pulmonary alveolar macrophages (PAMs) and the resulting lung damage is influenced by strain virulence. To better understand the pathogenesis of PRRSV infection, we performed a longitudinal study of the PAM population and lung cytokines in specific pathogen-free pigs infected either with the highly pathogenic Lena strain or with the low pathogenic Finistere strain in comparison to uninfected pigs. Bronchoalveolar lavage fluid (BALF) and blood were collected to follow viral, cellular and cytokine changes in lung with respect to clinical signs and systemic events. Compared to Finistere-infected pigs, Lena-infected pigs exhibited more severe clinical signs and 10- to 100-fold higher viral loads in BALF and blood. Similarly, they showed an earlier drop in BALF cell viability and phagocytic activity along with a decrease in the macrophage count. From 8 to 15 days post-infection (dpi), monocytes increased both in BALF and blood from Lena-infected pigs. BALF and blood showed contrasting cytokine patterns, with low increase of IFN-α and TNF-α levels and high increase for IL-1α and IL-8 in BALF after Lena-infection. In contrast, in the blood, the increase was marked for IFN-α and TNF-α but limited for IL-1ß and IL-8. Down-regulation of PAM functions combined with inflammatory cytokine and monocyte recruitment may promote lung pathogenesis and virus replication in PRRSV infections with the highly pathogenic Lena strain. In contrast, the low pathogenic Finistere strain showed prolonged viral replication in lung, possibly related to the weak IFN-γ response.


Assuntos
Citocinas/fisiologia , Macrófagos Alveolares/fisiologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/análise , Citometria de Fluxo/veterinária , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Suínos/imunologia , Suínos/virologia , Carga Viral/veterinária
3.
PLoS Pathog ; 10(8): e1004311, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166758

RESUMO

HIV causes rapid CD4+ T cell depletion in the gut mucosa, resulting in immune deficiency and defects in the intestinal epithelial barrier. Breakdown in gut barrier integrity is linked to chronic inflammation and disease progression. However, the early effects of HIV on the gut epithelium, prior to the CD4+ T cell depletion, are not known. Further, the impact of early viral infection on mucosal responses to pathogenic and commensal microbes has not been investigated. We utilized the SIV model of AIDS to assess the earliest host-virus interactions and mechanisms of inflammation and dysfunction in the gut, prior to CD4+ T cell depletion. An intestinal loop model was used to interrogate the effects of SIV infection on gut mucosal immune sensing and response to pathogens and commensal bacteria in vivo. At 2.5 days post-SIV infection, low viral loads were detected in peripheral blood and gut mucosa without CD4+ T cell loss. However, immunohistological analysis revealed the disruption of the gut epithelium manifested by decreased expression and mislocalization of tight junction proteins. Correlating with epithelial disruption was a significant induction of IL-1ß expression by Paneth cells, which were in close proximity to SIV-infected cells in the intestinal crypts. The IL-1ß response preceded the induction of the antiviral interferon response. Despite the disruption of the gut epithelium, no aberrant responses to pathogenic or commensal bacteria were observed. In fact, inoculation of commensal Lactobacillus plantarum in intestinal loops led to rapid anti-inflammatory response and epithelial tight junction repair in SIV infected macaques. Thus, intestinal Paneth cells are the earliest responders to viral infection and induce gut inflammation through IL-1ß signaling. Reversal of the IL-1ß induced gut epithelial damage by Lactobacillus plantarum suggests synergistic host-commensal interactions during early viral infection and identify these mechanisms as potential targets for therapeutic intervention.


Assuntos
Interleucina-1beta/biossíntese , Celulas de Paneth/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Imunofluorescência , Interações Hospedeiro-Parasita/imunologia , Imuno-Histoquímica , Interleucina-1beta/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/ultraestrutura , Mucosa Intestinal/virologia , Macaca mulatta , Masculino , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Celulas de Paneth/metabolismo , Celulas de Paneth/virologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Junções Íntimas/ultraestrutura , Carga Viral
4.
Vet Res ; 46: 55, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26048774

RESUMO

In developed countries, most of hepatitis E human cases are of zoonotic origin. Swine is a major hepatitis E virus (HEV) reservoir and foodborne transmissions after pork product consumption have been described. The risk for HEV-containing pig livers at slaughter time is related to the age at infection and to the virus shedding duration. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a virus that impairs the immune response; it is highly prevalent in pig production areas and suspected to influence HEV infection dynamics. The impact of PRRSV on the features of HEV infections was studied through an experimental HEV/PRRSV co-infection of specific-pathogen-free (SPF) pigs. The follow-up of the co-infected animals showed that HEV shedding was delayed by a factor of 1.9 in co-infected pigs compared to HEV-only infected pigs and specific immune response was delayed by a factor of 1.6. HEV shedding was significantly increased with co-infection and dramatically extended (48.6 versus 9.7 days for HEV only). The long-term HEV shedding was significantly correlated with the delayed humoral response in co-infected pigs. Direct transmission rate was estimated to be 4.7 times higher in case of co-infection than in HEV only infected pigs (0.70 and 0.15 per day respectively). HEV infection susceptibility was increased by a factor of 3.3, showing the major impact of PRRSV infection on HEV dynamics. Finally, HEV/PRRSV co-infection - frequently observed in pig herds - may lead to chronic HEV infection which may dramatically increase the risk of pig livers containing HEV at slaughter time.


Assuntos
Coinfecção/veterinária , Hepatite E/veterinária , Imunidade Humoral , Síndrome Respiratória e Reprodutiva Suína/transmissão , Eliminação de Partículas Virais , Animais , Doença Crônica , Coinfecção/imunologia , Coinfecção/transmissão , Coinfecção/virologia , Feminino , Hepatite E/imunologia , Hepatite E/transmissão , Hepatite E/virologia , Vírus da Hepatite E/fisiologia , Masculino , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Organismos Livres de Patógenos Específicos , Suínos
5.
Front Vet Sci ; 11: 1454762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253525

RESUMO

Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of in vivo co-infection studies have reported replication interferences between these two viruses. Herein, using a reductionist in vitro model, we investigated the potential mechanisms of these in vivo interferences. We first examined the impact of swIAV on porcine alveolar macrophages (AMs) and its effects on AMs co-infection by PRRSV. This was done either in monoculture or in co-culture with respiratory tracheal epithelial cells to represent the complexity of the interactions between the viruses and their respective target cells (epithelial cells for swIAV and AMs for PRRSV). AMs were obtained either from conventional or specific pathogen-free (SPF) pigs. SwIAV replication was abortive in AMs, inducing cell death at high multiplicity of infections. In AMs from three out of four conventional animals, swIAV showed no impact on PRRSV replication. However, inhibition of PRRSV multiplication was observed in AMs from one animal, accompanied by an early increase in the expression of interferon (IFN)-I and IFN-stimulated genes. In AMs from six SPF pigs, swIAV inhibited PRRSV replication in all animals, with an early induction of antiviral genes. Co-culture experiments involving tracheal epithelial cells and AMs from either SPF or conventional pigs all showed swIAV-induced inhibition of PRRSV replication, together with early induction of antiviral genes. These findings highlight the complex interactions between swIAV and PRRSV in porcine AMs, and would suggest a role of host factors, such as sanitary status, in modulating viral propagation. Our co-culture experiments demonstrated that swIAV inhibits PRRSV replication more effectively in the presence of respiratory tracheal epithelial cells, suggesting a synergistic antiviral response between AMs and epithelial cells, consistent with in vivo experiments.

6.
Front Immunol ; 15: 1358219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529285

RESUMO

African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989. We first compared the activation of type I interferon pathway in response to ASFV-989 and Georgia 2007/1 infections, employing both in vivo and in vitro models. Expression of IFN-α was significantly increased in porcine alveolar macrophages infected with ASFV-989 while pigs infected with Georgia 2007/1 showed higher IFN-α than those infected by ASFV-989. We also used a medium-throughput transcriptomic approach to study the expression of viral genes by both strains, and identified several patterns of gene expression. Subsequently, we investigated whether proteins encoded by the eight genes deleted in ASFV-989 contribute to the modulation of the type I interferon signaling pathway. Using different strategies, we showed that MGF505-4R interfered with the induction of IFN-α/ß pathway, likely through interaction with TRAF3. Altogether, our data reveal key differences between ASFV-989 and Georgia 2007/1 in their ability to control IFN-α/ß signaling and provide molecular mechanisms underlying the role of MGF505-4R as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Virulência , Macrófagos
7.
Viruses ; 14(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560781

RESUMO

African swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989. Compared to Georgia, the ASFV-989 strain genome has a deletion of 7458 nucleotides located in the 5'-end encoding region of MGF 505/360, which allowed for developing a DIVA PCR system. In vitro, in porcine alveolar macrophages, the replication kinetics of the ASFV-989 and Georgia strains were identical. In vivo, specific-pathogen-free (SPF) pigs inoculated with the ASFV-989 strain, either intramuscularly or oronasally, exhibited transient hyperthermia and slightly decreased growth performance. Animals immunized with the ASFV-989 strain showed viremia 100 to 1000 times lower than those inoculated with the Georgia strain and developed a rapid antibody and cell-mediated response. In ASFV-989-immunized pigs challenged 2 or 4 weeks later with the Georgia strain, no symptoms were recorded and no viremia for the challenge strain was detected. These results show that the ASFV-989 strain is a promising non-GMO vaccine candidate that is usable either intramuscularly or oronasally.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/fisiologia , Sus scrofa , Imunização
8.
J Infect Dis ; 202(3): 337-44, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20569157

RESUMO

BACKGROUND: The contribution of infected semen cells to sexual transmission of human immunodeficiency virus (HIV) is still debated. We addressed this issue in the model of experimental infection of macaques with simian immunodeficiency virus (SIV). METHODS: Frozen stocks of cells obtained from the spleen of macaques at the peak of SIVmac251 viremia were prepared. After being thawed and washed, cells were deposited at different concentrations in the vaginas of adult macaques treated with medroxyprogesterone acetate (Depo-Provera). To unravel mechanisms of infection, stock cells labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) were inoculated intravaginally. Follow-up testing of samples from the mucosa and different lymphoid tissues obtained 21 and 45 h later was performed by flow cytometry, immunohistochemical analysis, and in situ hybridization. RESULTS: Systemic and persistent infection was achieved after vaginal exposure of macaques to SIV-infected cells. The dose needed to infect 50% of females was 6.69 x 10(5)+/-2.08 x 10(5) viral DNA copies. At days 1 and 2 after exposure to cell-associated SIV labeled with CFSE, SIV-positive cells were detected in proximal and distal lymphoid tissues. CONCLUSIONS: Infection with SIV after exposure of vaginal and cervical mucosa to cell-associated virus represents a new mechanism of sexual transmission of HIV and SIV that may have significant impacts in the development of preventive approaches like microbicides.


Assuntos
Modelos Animais de Doenças , Macaca , Doenças Virais Sexualmente Transmissíveis/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vagina/virologia , Animais , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Hibridização In Situ , Tecido Linfoide/virologia , Mucosa/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Baço/virologia
9.
Vaccines (Basel) ; 9(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33921958

RESUMO

In July 2019, a vaccine-derived recombinant Porcine reproductive and respiratory syndrome virus 1 strain (PRRSV-1) (Horsens strain) infected more than 40 Danish sow herds, resulting in severe losses. In the present study, the pathogenicity of the recombinant Horsens strain was assessed and compared to a reference PRRSV-1 strain using a well-characterized experimental model in young SPF pigs. Furthermore, the efficacies of three different PRRSV-1 MLV vaccines to protect pigs against challenge with the recombinant strain were assessed. Following challenge, the unvaccinated pigs challenged with the Horsens strain had significant increased viral load in serum compared to all other groups. No macroscopic changes were observed at necropsy, but tissue from the lungs and tonsils from almost all pigs were PRRSV-positive. The viral load in serum was lower in all vaccinated groups compared to the unvaccinated group challenged with the Horsens strain, and only small differences were seen among the vaccinated groups. The findings in the present study, combined with two other recent reports, indicate that this recombinant "Horsens" strain indeed is capable of inducing infection in growing pigs as well as in pregnant sows that is comparable to or even exceeding those induced by typical PRRSV-1, subtype 1 strains. However, absence of notable clinical signs and lack of significant macroscopic changes indicate that this strain is less virulent than previously characterized highly virulent PRRSV-1 strains.

10.
Vaccines (Basel) ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923464

RESUMO

Modified live vaccines (MLVs) against the porcine reproductive and respiratory syndrome virus (PRRSV) have been regularly associated with safety issues, such as reversion to virulence. In order to characterize the phenotypic and genetic evolution of the PRRSV-1 DV strain from the Porcilis® PRRS MLV after limited passages in pigs, three in vivo experiments were performed. Trial#1 aimed (i) at studying transmission of the vaccine strain from vaccinated to unvaccinated contact pigs. Trial#2 and Trial#3 were designed (ii) to assess the reproducibility of Trial#1, using another vaccine batch, and (iii) to compare the virulence levels of two DV strains isolated from vaccinated (passage one) and diseased contact pigs (passage two) from Trial#1. DV strain isolates from vaccinated and contact pigs from Trial#1 and Trial#2 were submitted to Next-Generation Sequencing (NGS) full-genome sequencing. All contact animals from Trial#1 were infected and showed significantly increased viremia compared to vaccinated pigs, whereas no such change was observed during Trial#2. In Trial#3, viremia and transmission were higher for inoculated pigs with passage two of the DV strain, compared with passage one. In this study, we showed that the re-adaptation of the DV strain to pigs is associated with faster replication and increased transmission of the vaccine strain. Punctually, a decrease of attenuation of the DV vaccine strain associated with clinical signs and increased viremia may occur after limited passages in pigs. Furthermore, we identified three mutations linked to pig re-adaptation and five other mutations as potential virulence determinants.

11.
Vaccines (Basel) ; 9(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917103

RESUMO

Modified-live vaccines (MLVs) against porcine reproductive and respiratory syndrome viruses (PRRSVs) are usually administrated to piglets at weaning when swine influenza A virus (swIAV) infections frequently occur. SwIAV infection induces a strong interferon alpha (IFNa) response and IFNa was shown to abrogate PRRSV2 MLV replication and an inherent immune response. In this study, we evaluated the impacts of swIAV infection on the replication of a PRRSV1 MLV (MLV1), post-vaccine immune responses and post-challenge vaccine efficacy at both the systemic and pulmonary levels. Piglets were either swIAV inoculated and MLV1 vaccinated 6 h apart or singly vaccinated or mock inoculated and mock vaccinated. Four weeks after vaccination, the piglets were challenged with a PRRSV1 field strain. The results showed that swIAV infection delayed MLV1 viremia by six days and post-vaccine seroconversion by four days. After the PRRSV1 challenge, the swIAV enhanced the PRRSV1-specific cell-mediated immunity (CMI) but the PRRSV1 field strain viremia was not better controlled. High IFNa levels that were detected early after swIAV infection could have been responsible for both the inhibition of MLV1 replication and CMI enhancement. Thus, whereas swIAV infection had a negative impact on humoral responses post-vaccination, it did not interfere with the protective effectiveness of the PRRSV MLV1 in our experimental conditions.

12.
Viruses ; 13(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834975

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated. In PRRSV/swIAV group, the clinical signs usually observed after swIAV infection were attenuated while higher levels of anti-swIAV antibodies were measured in lungs. Concurrently, PRRSV multiplication in lungs was significantly affected by swIAV infection, whereas the cell-mediated immune response specific to PRRSV was detected earlier in blood, as compared to PRRSV group. Moreover, levels of interferon (IFN)-α measured from SD9 in the blood of super-infected pigs were lower than those measured in the swIAV group, but higher than in the PRRSV group at the same time. Correlation analyses suggested an important role of IFN-α in the two-way interference highlighted between both viral infections.


Assuntos
Vírus da Influenza A Subtipo H1N2/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunidade , Vírus da Influenza A/imunologia , Interferon-alfa , Pulmão/imunologia , Infecções por Orthomyxoviridae/virologia , Organismos Livres de Patógenos Específicos , Suínos , Doenças dos Suínos/virologia
13.
Retrovirology ; 7: 78, 2010 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-20868521

RESUMO

BACKGROUND: HIV reservoirs are rapidly established after infection, and the effect of HAART initiated very early during acute infection on HIV reservoirs remains poorly documented, particularly in tissue known to actively replicate the virus. In this context, we used the model of experimental infection of macaques with pathogenic SIV to assess in different tissues: (i) the effect of a short term HAART initiated at different stages during acute infection on viral dissemination and replication, and (ii) the local concentration of antiviral drugs. RESULTS: Here, we show that early treatment with AZT/3TC/IDV initiated either within 4 hours after intravenous infection of macaques with SIVmac251 (as a post exposure prophylaxis) or before viremia peak (7 days post-infection [pi]), had a strong impact on SIV production and dissemination in all tissues but did not prevent infection. When treatment was initiated after the viremia peak (14 days pi) or during early chronic infection (150 days pi), significant viral replication persists in the peripheral lymph nodes and the spleen of treated macaques despite a strong effect of treatment on viremia and gut associated lymphoid tissues. In these animals, the level of virus persistence in tissues was inversely correlated with local concentrations of 3TC: high concentrations of 3TC were measured in the gut whereas low concentrations were observed in the secondary lymphoid tissues. IDV, like 3TC, showed much higher concentration in the colon than in the spleen. AZT concentration was below the quantification threshold in all tissues studied. CONCLUSIONS: Our results suggest that limited antiviral drug diffusion in secondary lymphoid tissues may allow persistent viral replication in these tissues and could represent an obstacle to HIV prevention and eradication.


Assuntos
Inibidores da Protease de HIV/uso terapêutico , Indinavir/uso terapêutico , Lamivudina/uso terapêutico , Inibidores da Transcriptase Reversa/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia , Zidovudina/uso terapêutico , Administração Cutânea , Administração Oral , Animais , Terapia Antirretroviral de Alta Atividade , Esquema de Medicação , Inibidores da Protease de HIV/administração & dosagem , Inibidores da Protease de HIV/metabolismo , Indinavir/administração & dosagem , Indinavir/metabolismo , Lamivudina/administração & dosagem , Lamivudina/metabolismo , Macaca fascicularis , Masculino , Inibidores da Transcriptase Reversa/administração & dosagem , Inibidores da Transcriptase Reversa/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Fatores de Tempo , Distribuição Tecidual , Viremia/tratamento farmacológico , Viremia/metabolismo , Viremia/virologia , Zidovudina/administração & dosagem , Zidovudina/metabolismo
14.
Vaccines (Basel) ; 8(3)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899579

RESUMO

Respiratory infections are still a major concern in pigs. Amongst the involved viruses, the porcine reproductive and respiratory syndrome virus (PRRSV) and the swine influenza type A virus (swIAV) have a major impact. These viruses frequently encounter and dual infections are reported. We analyzed here the molecular interactions between viruses and porcine tracheal epithelial cells as well as lung tissue. PRRSV-1 species do not infect porcine respiratory epithelial cells. However, PRRSV-1, when inoculated simultaneously or shortly before swIAV, was able to inhibit swIAV H1N2 infection, modulate the interferon response and alter signaling protein phosphorylations (ERK, AKT, AMPK, and JAK2), in our conditions. SwIAV inhibition was also observed, although at a lower level, by inactivated PRRSV-1, whereas acid wash treatment inactivating non-penetrated viruses suppressed the interference effect. PRRSV-1 and swIAV may interact at several stages, before their attachment to the cells, when they attach to their receptors, and later on. In conclusion, we showed for the first time that PRRSV can alter the relation between swIAV and its main target cells, opening the doors to further studies on the interplay between viruses. Consequences of these peculiar interactions on viral infections and vaccinations using modified live vaccines require further investigations.

15.
Vet Microbiol ; 244: 108656, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32402344

RESUMO

Co-infection by a type 1 modified live vaccine-like strain (MLV1-like) of porcine reproductive and respiratory syndrome virus (PRRSV) and a type 2 porcine circovirus (PCV2) was identified on a French pig farm with post-weaning multisystemic wasting syndrome (PMWS). An in vivo experiment was set up to characterize the virulence level of the MLV1-like strain compared with the parental MLV1 strain, and to assess the impact of PCV2 co-infection on the pathogenicity of both PRRSV strains. Six groups of six pigs each were inoculated only with either one of the two PRRSV strains or with PCV2, or co-inoculated with PCV2 and MLV1 or PCV2 and MLV1-like strains. Six contact pigs were added to each inoculated group to assess viral transmission. The animals were monitored daily for 35 days post-inoculation for clinical symptoms. Blood and nasal swabs were sampled twice a week, and tissue samples were collected during necropsy for viral quantification. Compared to MLV1-infected pigs, animals infected with the MLV1-like strain had increased PRRSV viremia and nasal shedding, a higher viral load in the tonsils, and lymph node hypertrophy at microscopic level. PCV2 co-infection did not influence clinical, virologic or transmission parameters for MLV1, but co-infected MLV1-like/PCV2 pigs had the most severe lung lesions, the highest viremia in contact animals and the highest transmission rate. Our study demonstrated that the MLV1 strain tested was safe when co-inoculated with PCV2 in piglets. However, co-infection by the MLV1-like strain and PCV2 resulted in increased virulence compared with that due to a single infection.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/patogenicidade , Coinfecção/veterinária , Coinfecção/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Animais , Infecções por Circoviridae/patologia , DNA Viral/sangue , Fazendas , França , Genoma Viral , Síndrome Respiratória e Reprodutiva Suína/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Organismos Livres de Patógenos Específicos , Suínos , Carga Viral , Viremia , Virulência , Eliminação de Partículas Virais
16.
Retrovirology ; 6: 106, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19930655

RESUMO

BACKGROUND: Extensive studies of primary infection are crucial to our understanding of the course of HIV disease. In SIV-infected macaques, a model closely mimicking HIV pathogenesis, we used a combination of three markers -- viral RNA, 2LTR circles and viral DNA -- to evaluate viral replication and dissemination simultaneously in blood, secondary lymphoid tissues, and the gut during primary and chronic infections. Subsequent viral compartmentalization in the main target cells of the virus in peripheral blood during the chronic phase of infection was evaluated by cell sorting and viral quantification with the three markers studied. RESULTS: The evolutions of viral RNA, 2LTR circles and DNA levels were correlated in a given tissue during primary and early chronic infection. The decrease in plasma viral load principally reflects a large decrease in viral replication in gut-associated lymphoid tissue (GALT), with viral RNA and DNA levels remaining stable in the spleen and peripheral lymph nodes. Later, during chronic infection, a progressive depletion of central memory CD4+ T cells from the peripheral blood was observed, accompanied by high levels of viral replication in the cells of this subtype. The virus was also found to replicate at this point in the infection in naive CD4+ T cells. Viral RNA was frequently detected in monocytes, but no SIV replication appeared to occur in these cells, as no viral DNA or 2LTR circles were detected. CONCLUSION: We demonstrated the persistence of viral replication and dissemination, mostly in secondary lymphoid tissues, during primary and early chronic infection. During chronic infection, the central memory CD4+ T cells were the major site of viral replication in peripheral blood, but viral replication also occurred in naive CD4+ T cells. The role of monocytes seemed to be limited to carrying the virus as a cargo because there was an observed lack of replication in these cells. These data may have important implications for the targeting of HIV treatment to these diverse compartments.


Assuntos
Tecido Linfoide/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Linfócitos T CD4-Positivos/imunologia , Progressão da Doença , Memória Imunológica , Tecido Linfoide/imunologia , Macaca fascicularis , RNA Viral/sangue , RNA Viral/genética , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/genética
17.
J Virol ; 82(11): 5501-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18385229

RESUMO

Simian immunodeficiency virus (SIV) persistence in wild populations of African nonhuman primates (NHPs) may occur through horizontal and vertical transmission. However, the mechanism(s) and timing of the latter type of transmission have not been investigated to date. Here we present the first study of SIV transmissibility by breast-feeding in an African NHP host. Six mandrill dames were infected with plasma containing 300 50% tissue culture infective doses of SIVmnd-1 on the day after delivery. All female mandrills became infected, as demonstrated by both plasma viral loads (VLs) and anti-SIVmnd-1 seroconversion. Neither fever nor lymphadenopathy was observed. At the peak of SIVmnd-1 viral replication (days 7 to 10 postinoculation), plasma VLs were high (8 x 10(6) to 8 x 10(8) RNA copies/ml) and paralleled the high VLs in milk (4.7 x 10(4) to 5.6 x 10(5) RNA/ml). However, at the end of the breast-feeding period, after 6 months of follow-up, no sign of infection was observed for the offspring. Later on, during a 4-year follow-up examination, two of the offspring showed virological evidence of SIVmnd-1 infection. Both animals seroconverted at least 6 months after the interruption of lactation. In conclusion, despite extensive viral replication in mandrill mothers and high levels of free virus in milk, no SIVmnd-1 transmission was detectable at the time of breast-feeding or during the following months. Since we observed a markedly lower expression of CCR5 on the CD4(+) T cells of young mandrills and African green monkeys than on those of adults, we propose that low levels of this viral coreceptor on CD4(+) T cells may be involved in the lack of breast-feeding transmission in natural hosts of SIVs.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Comportamento Alimentar/fisiologia , Mandrillus/imunologia , Mandrillus/virologia , Receptores CCR5/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Feminino , Dosagem de Genes/genética , Contagem de Linfócitos , Leite/metabolismo , Leite/virologia , RNA Viral/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
18.
Int J Food Microbiol ; 292: 144-149, 2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30599454

RESUMO

Although hepatitis E virus (HEV) transmission has been demonstrated after consumption of products containing infected pig liver, human cases can be also associated with other pig meat products, such as sausages. Data on HEV viremia and dissemination in muscle meat of infected animals are still sparse, especially during long-term infection. Previously, we have shown that experimental co-infection of pigs with HEV and porcine reproductive and respiratory syndrome virus (PRRSV) lengthens HEV infection up to 49 days and increases the likelihood of the presence of HEV RNA in the liver of the pig at a later stage of infection. In the present study, we show that during experimental HEV-PRRSV co-infection, prolonged HEV viremia, up to 49 days post-inoculation (dpi), is detected. The long-term viremia observed was statistically associated with the absence of HEV seroconversion. HEV RNA was also frequently detected, at a late stage of infection (49 dpi), in the three different types of muscle tested: femoral biceps, psoas major or diaphragm pillar. The HEV RNA load could reach up to 1 ·â€¯106 genome copies per gram of muscle. Detection of HEV in muscle meat was statistically associated with high HEV loads in corresponding liver and fecal samples. The presence of HEV in pig blood, femoral biceps and major psoas, corresponding to ham and tenderloin muscles respectively, is of concern for the food industry. Hence, these results indicate new potential risks for consumers and public health regarding pork products.


Assuntos
Coinfecção/virologia , Contaminação de Alimentos , Vírus da Hepatite E/isolamento & purificação , Músculo Esquelético/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Carne Vermelha/virologia , Viremia/diagnóstico , Animais , Coinfecção/diagnóstico , Fezes/virologia , Microbiologia de Alimentos , Hepatite E/diagnóstico , Hepatite E/transmissão , Produtos da Carne/virologia , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Síndrome Respiratória e Reprodutiva Suína/transmissão , RNA Viral/isolamento & purificação , Fatores de Risco , Suínos/virologia , Doenças dos Suínos/virologia
19.
Vet Microbiol ; 230: 249-259, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827397

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) is plaguing porcine production. Previously piglets were immunized with a PRRSV-1 commercial modified live virus vaccine (MLV1), a PRRSV-2 MLV (MLV2) or a Western European strain (Finistere: Fini) to assess and compare the protection brought by these strains upon challenge with virulent Lena strain. Lena viremia was reduced in all the immunized groups with a slightly higher level of protection following immunization with Fini. Using lung samples collected from the same experiment, tissue response to Lena challenge was assessed at the acute and chronic stages of infection. A pre-immunization with any one of the three PRRSV strains globally exacerbated microscopic lung lesions. Ten days post-challenge (DPC), MLV1 group score was higher than unimmunized group score and 42 DPC, MLV2 group score was higher than in unimmunized group. Lowest lung Lena viral loads were measured in Fini group. Using principal component analysis, we showed 10 DPC that the lesion score was positively correlated with chemokine receptors and negatively correlated with viral load. Forty-two DPC, variables for lesion score, IL6, IL8, and CCL20 transcripts were positively correlated together and negatively correlated with CCL28, CXCL6, and CXCR4 transcripts suggesting a role for the latter ones in the tissue recovery process. In conclusions, our study shows a significant impact of the three immunizations on pulmonary tissue with the best protection against Lena challenge conferred by Fini strain. Furthermore, it gives insight into the interactions between vaccine and Fini strains and the lung upon Lena challenge.


Assuntos
Anticorpos Antivirais/sangue , Pulmão/virologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vacinas Virais/imunologia , Animais , Quimiocinas/imunologia , Citocinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Análise de Componente Principal , Suínos , Vacinas Atenuadas/imunologia , Carga Viral , Viremia
20.
Viruses ; 11(3)2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909591

RESUMO

In Europe, modified live vaccines (MLV) are commonly used to control porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, they have been associated with safety issues such as reversion to virulence induced by mutation and/or recombination. On a French pig farm, we identified a field recombinant strain derived from two PRRSV-1 MLV (MLV1). As a result, we aimed to evaluate its clinical, virological, and transmission parameters in comparison with both parental strains. Three groups with six pigs in each were inoculated with either one of the two MLV1s or with the recombinant strain; six contact pigs were then added into each inoculated group. The animals were monitored daily for 35 days post-inoculation (dpi) for clinical symptoms; blood samples and nasal swabs were collected twice a week. PRRS viral load in inoculated pigs of recombinant group was higher in serum, nasal swabs, and tonsils in comparison with both vaccine groups. The first viremic contact pig was detected as soon as 2 dpi in the recombinant group compared to 10 and 17 dpi for vaccine groups. Estimation of transmission parameters revealed fastest transmission and longest duration of infectiousness for recombinant group. Our in vivo study showed that the field recombinant strain derived from two MLV1s demonstrated high viremia, shedding and transmission capacities.


Assuntos
Anticorpos Antivirais/sangue , Síndrome Respiratória e Reprodutiva Suína/transmissão , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Vacinas Virais/imunologia , Viremia/veterinária , Animais , Pulmão/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Organismos Livres de Patógenos Específicos , Suínos , Vacinação/veterinária , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral , Vacinas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA