Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 572(7767): 56-61, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316207

RESUMO

The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)-which uses sterilization caused by the maternally inherited endosymbiotic bacteria Wolbachia-is a promising alternative, but can be undermined by accidental release of females infected with the same Wolbachia strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT-SIT) enables near elimination of field populations of the world's most invasive mosquito species, Aedes albopictus. Millions of factory-reared adult males with an artificial triple-Wolbachia infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT-SIT for mosquito vector control.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Wolbachia/patogenicidade , Aedes/crescimento & desenvolvimento , Animais , China , Copulação , Estudos de Viabilidade , Feminino , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Masculino , Mosquitos Vetores/crescimento & desenvolvimento , Controle de Qualidade , Reprodução
2.
BMC Biotechnol ; 24(1): 7, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302991

RESUMO

BACKGROUND: The Mediterranean fruit fly, Ceratitis capitata, is a significant agricultural pest managed through area-wide integrated pest management (AW-IPM) including a sterile insect technique (SIT) component. Male-only releases increase the efficiency and cost-effectiveness of SIT programs, which can be achieved through the development of genetic sexing strains (GSS). The most successful GSS developed to date is the C. capitata VIENNA 8 GSS, constructed using classical genetic approaches and an irradiation-induced translocation with two selectable markers: the white pupae (wp) and temperature-sensitive lethal (tsl) genes. However, currently used methods for selecting suitable markers and inducing translocations are stochastic and non-specific, resulting in a laborious and time-consuming process. Recent efforts have focused on identifying the gene(s) and the causal mutation(s) for suitable phenotypes, such as wp and tsl, which could be used as selectable markers for developing a generic approach for constructing GSS. The wp gene was recently identified, and efforts have been initiated to identify the tsl gene. This study investigates Ceratitis capitata deep orange (Ccdor) as a tsl candidate gene and its potential to induce tsl phenotypes. RESULTS: An integrated approach based on cytogenetics, genomics, bioinformatics, and gene editing was used to characterize the Ccdor. Its location was confirmed on the right arm of chromosome 5 in the putative tsl genomic region. Knock-out of Ccdor using CRISPR/Cas9-NHEJ and targeting the fourth exon resulted in lethality at mid- and late-pupal stage, while the successful application of CRISPR HDR introducing a point mutation on the sixth exon resulted in the establishment of the desired strain and two additional strains (dor 12del and dor 51dup), all of them expressing tsl phenotypes and presenting no (or minimal) fitness cost when reared at 25 °C. One of the strains exhibited complete lethality when embryos were exposed at 36 °C. CONCLUSIONS: Gene editing of the deep orange gene in Ceratitis capitata resulted in the establishment of temperature-sensitive lethal mutant strains. The induced mutations did not significantly affect the rearing efficiency of the strains. As deep orange is a highly conserved gene, these data suggest that it can be considered a target for the development of tsl mutations which could potentially be used to develop novel genetic sexing strains in insect pests and disease vectors.


Assuntos
Ceratitis capitata , Animais , Masculino , Ceratitis capitata/genética , Edição de Genes , Temperatura , Mutação , Fenótipo , Controle Biológico de Vetores/métodos
3.
Bull Entomol Res ; 113(4): 537-545, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37325903

RESUMO

The Ceratitis FARQ species complex consists of four highly destructive agricultural pests of Africa, namely C. fasciventris, C. anonae, C. rosa, and C. quilicii. The members of the complex are considered very closely related and the species limits among them are rather obscure. Their economic significance and the need for developing biological methods for their control makes species identification within the complex an important issue, which has become clear that can only be addressed by multidisciplinary approaches. Chromosomes, both mitotic and polytene, can provide a useful tool for species characterization and phylogenetic inference among closely related dipteran species. In the current study, we present the mitotic karyotype and the polytene chromosomes of C. rosa and C. quilicii together with in situ hybridization data. We performed a comparative cytogenetic analysis among the above two species and C. fasciventris, the only other cytogenetically studied member of the FARQ complex, by comparing the mitotic complement and the banding pattern of the polytene chromosomes of each species to the others, as well as by studying the polytene chromosomes of hybrids between them. Our analysis revealed no detectable chromosomal rearrangements discriminating the three FARQ members studied, confirming their close phylogenetic relationships.


Assuntos
Rosa , Tephritidae , Animais , Tephritidae/genética , Rosa/genética , Filogenia , Cariotipagem , Cariótipo
4.
BMC Genomics ; 21(1): 259, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228451

RESUMO

BACKGROUND: The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly's biology and proposing alternative control methods to pesticide use. RESULTS: Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. CONCLUSIONS: The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome's organization, function and evolution and is poised to provide avenues for sterile insect technique approaches.


Assuntos
Tephritidae/genética , Cromossomo Y/genética , Cromossomo Y/metabolismo , Animais , Feminino , Genoma de Inseto/genética , Masculino , Reação em Cadeia da Polimerase
5.
BMC Genet ; 21(Suppl 2): 134, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339513

RESUMO

BACKGROUND: Area-wide integrated pest management programs (AW-IPM) incorporating sterile insect technique (SIT) have been successful in suppressing populations of different fruit fly species during the last six decades. In addition, the development of genetic sexing strains (GSS) for different fruit fly species has allowed for sterile male-only releases and has significantly improved the efficacy and cost effectiveness of the SIT applications. The South American Fruit Fly Anastrepha fraterculus (Diptera: Tephritidae) is a major agricultural pest attacking several fruit commodities. This impedes international trade and has a significant negative impact on the local economies. Given the importance of sterile male-only releases, the development of a GSS for A. fraterculus would facilitate the implementation of an efficient and cost-effective SIT operational program against this insect pest species. RESULTS: For potential use in a GSS, three new morphological markers (mutants) were isolated in a laboratory strain of A. fraterculus sp. 1, including the black pupae (bp) gene located on chromosome VI. The black pupa phenotype was used as a selectable marker to develop genetic sexing strains by linking the wild type allele (bp+) to the Y-chromosome -via irradiation to induce a reciprocal Y-autosome translocation. Four GSS were established and one of them, namely GSS-89, showed the best genetic stability and the highest fertility. This strain was selected for further characterization and cytogenetic analysis. CONCLUSIONS: We herein report the development of the first genetic sexing strain of a major agricultural pest, A. fraterculus sp. 1, using as a selectable marker the black pupae genetic locus.


Assuntos
Cor , Pupa/fisiologia , Tephritidae/genética , Alelos , Animais , Cromossomos de Insetos/genética , Feminino , Fertilidade , Ligação Genética , Marcadores Genéticos , Controle de Insetos , Masculino , Fenótipo , Tephritidae/fisiologia , Cromossomo Y/genética
6.
BMC Genet ; 21(Suppl 2): 128, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339507

RESUMO

BACKGROUND: The Mediterranean fruit fly, Ceratitis capitata, is a cosmopolitan agricultural pest of worldwide economic importance and a model for the development of the Sterile Insect Technique (SIT) for fruit flies of the Tephritidae family (Diptera). SIT relies on the effective mating of laboratory-reared strains and natural populations, and therefore requires an efficient mass-rearing system that will allow for the production of high-quality males. Adaptation of wild flies to an artificial laboratory environment can be accompanied by negative effects on several life history traits through changes in their genetic diversity and symbiotic communities. Such changes may lead to reduced biological quality and mating competitiveness in respect to the wild populations. Profiling wild populations can help understand, and maybe reverse, deleterious effects accompanying laboratory domestication thus providing insects that can efficiently and effectively support SIT application. RESULTS: In the present study, we analyzed both the genetic structure and gut symbiotic communities of natural medfly populations of worldwide distribution, including Europe, Africa, Australia, and the Americas. The genetic structure of 408 individuals from 15 distinct populations was analyzed with a set of commonly used microsatellite markers. The symbiotic communities of a subset of 265 individuals from 11 populations were analyzed using the 16S rRNA gene-based amplicon sequencing of single individuals (adults). Genetic differentiation was detected among geographically distant populations while adults originated from neighboring areas were genetically closer. Alpha and beta diversity of bacterial communities pointed to an overall reduced symbiotic diversity and the influence of the geographic location on the bacterial profile. CONCLUSIONS: Our analysis revealed differences both in the genetic profile and the structure of gut symbiotic communities of medfly natural populations. The genetic analysis expanded our knowledge to populations not analyzed before and our results were in accordance with the existing scenarios regarding this species expansion and colonization pathways. At the same time, the bacterial communities from different natural medfly populations have been characterized, thus broadening our knowledge on the microbiota of the species across its range. Genetic and symbiotic differences between natural and laboratory populations must be considered when designing AW-IPM approaches with a SIT component, since they may impact mating compatibility and mating competitiveness of the laboratory-reared males. In parallel, enrichment from wild populations and/or symbiotic supplementation could increase rearing productivity, biological quality, and mating competitiveness of SIT-important laboratory strains.


Assuntos
Bactérias/classificação , Ceratitis capitata/genética , Ceratitis capitata/microbiologia , Genética Populacional , Simbiose , Animais , Feminino , Microbioma Gastrointestinal , Masculino , Repetições de Microssatélites , Polimorfismo Genético , RNA Ribossômico 16S/genética
7.
BMC Genet ; 21(Suppl 2): 142, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339503

RESUMO

BACKGROUND: Aedes aegypti is the primary vector of arthropod-borne viruses and one of the most widespread and invasive mosquito species. Due to the lack of efficient specific drugs or vaccination strategies, vector population control methods, such as the sterile insect technique, are receiving renewed interest. However, availability of a reliable genetic sexing strategy is crucial, since there is almost zero tolerance for accidentally released females. Development of genetic sexing strains through classical genetics is hindered by genetic recombination that is not suppressed in males as is the case in many Diptera. Isolation of naturally-occurring or irradiation-induced inversions can enhance the genetic stability of genetic sexing strains developed through genetically linking desirable phenotypes with the male determining region. RESULTS: For the induction and isolation of inversions through irradiation, 200 male pupae of the 'BRA' wild type strain were irradiated at 30 Gy and 100 isomale lines were set up by crossing with homozygous 'red-eye' (re) mutant females. Recombination between re and the M locus and the white (w) gene (causing a recessive white eye phenotype when mutated) and the M locus was tested in 45 and 32 lines, respectively. One inversion (Inv35) reduced recombination between both re and the M locus, and wand the M locus, consistent with the presence of a rather extended inversion between the two morphological mutations, that includes the M locus. Another inversion (Inv5) reduced recombination only between w and the M locus. In search of naturally-occurring, recombination-suppressing inversions, homozygous females from the red eye and the white eye strains were crossed with seventeen and fourteen wild type strains collected worldwide, representing either recently colonized or long-established laboratory populations. Despite evidence of varying frequencies of recombination, no combination led to the elimination or substantial reduction of recombination. CONCLUSION: Inducing inversions through irradiation is a feasible strategy to isolate recombination suppressors either on the M or the m chromosome for Aedes aegypti. Such inversions can be incorporated in genetic sexing strains developed through classical genetics to enhance their genetic stability and support SIT or other approaches that aim to population suppression through male-delivered sterility.


Assuntos
Aedes/genética , Aedes/efeitos da radiação , Infertilidade/genética , Recombinação Genética/efeitos da radiação , Animais , Feminino , Raios gama , Genes de Insetos , Marcadores Genéticos , Controle de Insetos , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos da radiação
8.
BMC Biotechnol ; 19(Suppl 2): 90, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847833

RESUMO

BACKGROUND: Enterobacter sp. AA26 was recently isolated from the midgut of Ceratitis capitata (Wiedemann) and it was shown to have positive effects in rearing efficiency when used as larval probiotics. In this study, biomass production was carried out in bench-scale bioreactors to elucidate the biokinetic properties of Enterobacter sp. AA26 and its nutritional value. RESULTS: Strain AA26 is a psychrotolerant, halotolerant, facultatively anaerobic bacterium with broad pH range for growth (pH 4 to 10.2), which possessed the typical biochemical profile of Enterobacter spp. The specific oxygen uptake rate (SOUR) was calculated as 63.2 ± 1.26 and 121 ± 1.73 mg O2 g- 1 VSS h- 1, with the yield coefficients in acetate and glucose being equal to 0.62 ± 0.03 and 0.67 ± 0.003 g biomass produced/g substrate consumed, respectively. The maximum specific growth rate (µmax) of strain AA26 grown in fill-and-draw bioreactors at 20 °C and 35 °C was 0.035 and 0.069 h- 1, respectively. Strain AA26 grew effectively in agro-industrial wastewaters, i.e. cheese whey wastewater (CWW), as alternative substrate for replacing yeast-based media. Biomass of strain AA26 could provide all the essential amino acids and vitamins for the artificial rearing of C. capitata. Greater intracellular α- and ß-glucosidase activities were observed during growth of strain AA26 in CWW than in yeast-based substrate, although the opposite pattern was observed for the respective extracellular activities (p < 0.01). Low protease activity was exhibited in cells grown in yeast-based medium, while no lipase activities were detected. CONCLUSIONS: The ability of strain AA26 to grow in agro-industrial wastes and to provide all the essential nutrients can minimize the cost of commercial media used for mass rearing and large scale sterile insect technique applications.


Assuntos
Aminoácidos Essenciais/metabolismo , Reatores Biológicos/microbiologia , Ceratitis capitata/microbiologia , Enterobacter/crescimento & desenvolvimento , Vitaminas/metabolismo , Acetatos/metabolismo , Animais , Técnicas de Cultura Celular por Lotes , Biomassa , Ceratitis capitata/fisiologia , Enterobacter/metabolismo , Enterobacter/fisiologia , Glucose/metabolismo , Resíduos Industriais , Probióticos/administração & dosagem , Águas Residuárias/microbiologia
9.
BMC Biotechnol ; 19(Suppl 2): 96, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847836

RESUMO

BACKGROUND: Wolbachia pipientis is a widespread, obligatory intracellular and maternally inherited bacterium, that induces a wide range of reproductive alterations to its hosts. Cytoplasmic Incompatibility (CI) is causing embryonic lethality, the most common of them. Despite that Wolbachia-borne sterility has been proposed as an environmental friendly pest control method (Incompatible Insect Technique, IIT) since 1970s, the fact that Wolbachia modifies important fitness components of its hosts sets severe barriers to IIT implementation. Mass rearing of Mediterranean fruit fly, Ceratitis capitata (medfly), is highly optimized given that this pest is a model species regarding the implementation of another sterility based pest control method, the Sterile Insect Technique (SIT). We used the medfly-Wolbachia symbiotic association, as a model system, to study the effect of two different Wolbachia strains, on the life history traits of 2 C. capitata lines with different genomic background. RESULTS: Wolbachia effects are regulated by both C. capitata genetic background and the Wolbachia strain. Wolbachia infection reduces fertility rates in both C. capitata genetic backgrounds and shortens the pre-pupa developmental duration in the GSS strain. On the other hand, regardless of the strain of Wolbachia (wCer2, wCer4) infection does not affect either the sex ratio or the longevity of adults. wCer4 infection imposed a reduction in females' fecundity but wCer2 did not. Male mating competitiveness, adults flight ability and longevity under water and food deprivation were affected by both the genetic background of medfly and the strain of Wolbachia (genotype by genotype interaction). CONCLUSION: Wolbachia infection could alter important life history traits of mass-reared C. capitata lines and therefore the response of each genotype on the Wolbachia infection should be considered toward ensuring the productivity of the Wolbachia-infected insects under mass-rearing conditions.


Assuntos
Infecções por Anaplasmataceae/veterinária , Ceratitis capitata/fisiologia , Wolbachia/patogenicidade , Animais , Ceratitis capitata/classificação , Ceratitis capitata/genética , Ceratitis capitata/microbiologia , Feminino , Fertilidade , Genótipo , Masculino , Comportamento Sexual Animal , Simbiose , Wolbachia/classificação , Wolbachia/genética
10.
BMC Biotechnol ; 19(Suppl 2): 88, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847902

RESUMO

BACKGROUND: Symbiotic bacteria contribute to a multitude of important biological functions such as nutrition and reproduction and affect multiple physiological factors like fitness and longevity in their insect hosts. The melon fly, Zeugodacus cucurbitae (Coquillett), is an important agricultural pest that affects a variety of cultivated plants belonging mostly to the Cucurbitaceae family. It is considered invasive and widespread in many parts of the world. Several approaches are currently being considered for the management of its populations including the environmentally friendly and effective sterile insect technique (SIT), as a component of an integrated pest management (IPM) strategy. In the present study, we examined the effect of diet and radiation on the bacterial symbiome of Z. cucurbitae flies with the use of Next Generation Sequencing technologies. RESULTS: Melon flies were reared on two diets at the larval stage, an artificial bran-based diet and on sweet gourd, which affected significantly the development of the bacterial profiles. Significant differentiation was also observed based on gender. The effect of radiation was mostly diet dependent, with irradiated melon flies reared on the bran diet exhibiting a significant reduction in species diversity and richness compared to their non-irradiated controls. Changes in the bacterial symbiome of the irradiated melon flies included a drastic reduction in the number of sequences affiliated with members of Citrobacter, Raoultella, and Enterobacteriaceae. At the same time, an increase was observed for members of Enterobacter, Providencia and Morganella. Interestingly, the irradiated male melon flies reared on sweet gourd showed a clear differentiation compared to their non-irradiated controls, namely a significant reduction in species richness and minor differences in the relative abundance for members of Enterobacter and Providencia. CONCLUSIONS: The two diets in conjunction with the irradiation affected significantly the formation of the bacterial symbiome. Melon flies reared on the bran-based artificial diet displayed significant changes in the bacterial symbiome upon irradiation, in all aspects, including species richness, diversity and composition. When reared on sweet gourd, significant changes occurred to male samples due to radiation, only in terms of species richness.


Assuntos
Bactérias/classificação , Cucurbitaceae/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tephritidae/microbiologia , Ração Animal , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos da radiação , Feminino , Controle de Insetos , Masculino , Filogenia , Análise de Sequência de DNA , Simbiose , Tephritidae/fisiologia
11.
Mol Genet Genomics ; 294(6): 1535-1546, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31346719

RESUMO

The spotted wing drosophila, D. suzukii, is a serious agricultural pest attacking a variety of soft fruits and vegetables. Although originating from East Asia it has recently invaded America and Europe raising major concern about its expansion potential and the consequent economic losses. Since cytogenetic information on the species is scarce, we report here the mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of D. suzukii. The mitotic metaphase complement contains three pairs of autosomes, one of which is dot-like, and one pair of heteromorphic (XX/XY) sex chromosomes. The salivary gland polytene complement consists of five long polytene arms, representing the two metacentric autosomes and the acrocentric X chromosome, and one very short polytene element, which corresponds to the dot-like autosome. Banding pattern as well as the most characteristic features and prominent landmarks of each polytene chromosome arm are presented and discussed. Furthermore, twelve gene markers have been mapped on the polytene chromosomes of D. suzukii by in situ hybridization. Their distribution pattern was found quite similar to that of D. melanogaster revealing conservation of synteny although the relative position within each chromosome arm for most of the genes differed significantly between D. suzukii and D. melanogaster. The chromosome information presented here is suitable for comparative cytogenetic studies and phylogenetic exploration, while it could also facilitate the assembly of the genome sequence and support the development of genetic tools for species-specific and environment-friendly biological control applications such as the sterile insect technique.


Assuntos
Cromossomos de Insetos , Drosophila/genética , Cromossomos Politênicos , Animais , Mapeamento Cromossômico , Marcadores Genéticos , Hibridização In Situ , Mitose/genética , Cromossomo X
12.
BMC Microbiol ; 19(Suppl 1): 288, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870292

RESUMO

BACKGROUND: Insect species have established sophisticated symbiotic associations with diverse groups of microorganisms including bacteria which have been shown to affect several aspects of their biology, physiology, ecology and evolution. In addition, recent studies have shown that insect symbionts, including those localized in the gastrointestinal tract, can be exploited for the enhancement of sterile insect technique (SIT) applications against major insect pests such as the Mediterranean fruit fly (medfly) Ceratitis capitata. We previously showed that Enterobacter sp. AA26 can be used as probiotic supplement in medfly larval diet improving the productivity and accelerating the development of the VIENNA 8 genetic sexing strain (GSS), which is currently used in large scale operational SIT programs worldwide. RESULTS: Enterobacter sp. AA26 was an adequate nutritional source for C. capitata larvae, comprising an effective substitute for brewer's yeast. Incorporating inactive bacterial cells in the larval diet conferred a number of substantial beneficial effects on medfly biology. The consumption of bacteria-based diet (either as full or partial yeast replacement) resulted in decreased immature stages mortality, accelerated immature development, increased pupal weight, and elongated the survival under stress conditions. Moreover, neither the partial nor the complete replacement of yeast with Enterobacter sp. AA26 had significant impact on adult sex ratio, females' fecundity, adults' flight ability and males' mating competitiveness. The absence of both yeast and Enterobacter sp. AA26 (deprivation of protein source and possible other important nutrients) from the larval diet detrimentally affected the larval development, survival and elongated the immature developmental duration. CONCLUSIONS: Enterobacter sp. AA26 dry biomass can fully replace the brewer's yeast as a protein source in medfly larval diet without any effect on the productivity and the biological quality of reared medfly of VIENNA 8 GSS as assessed by the FAO/IAEA/USDA standard quality control tests. We discuss this finding in the context of mass-rearing and SIT applications.


Assuntos
Ceratitis capitata/fisiologia , Enterobacter/fisiologia , Controle Biológico de Vetores/métodos , Ração Animal , Animais , Biomassa , Ceratitis capitata/microbiologia , Feminino , Masculino , Probióticos/administração & dosagem , Comportamento Sexual Animal , Simbiose
13.
BMC Microbiol ; 19(Suppl 1): 289, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870290

RESUMO

BACKGROUND: Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). RESULTS: We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. CONCLUSIONS: We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Tephritidae/microbiologia , Wolbachia/fisiologia , Animais , Feminino , Masculino , Tipagem de Sequências Multilocus , Filogenia , Razão de Masculinidade , Comportamento Sexual Animal , Wolbachia/genética
14.
BMC Microbiol ; 19(Suppl 1): 290, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870298

RESUMO

BACKGROUND: Various endosymbiotic bacteria, including Wolbachia of the Alphaproteobacteria, infect a wide range of insects and are capable of inducing reproductive abnormalities to their hosts such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male-killing. These extended phenotypes can be potentially exploited in enhancing environmentally friendly methods, such as the sterile insect technique (SIT), for controlling natural populations of agricultural pests. The goal of the present study is to investigate the presence of Wolbachia, Spiroplasma, Arsenophonus and Cardinium among Bactrocera, Dacus and Zeugodacus flies of Southeast Asian populations, and to genotype any detected Wolbachia strains. RESULTS: A specific 16S rRNA PCR assay was used to investigate the presence of reproductive parasites in natural populations of nine different tephritid species originating from three Asian countries, Bangladesh, China and India. Wolbachia infections were identified in Bactrocera dorsalis, B. correcta, B. scutellaris and B. zonata, with 12.2-42.9% occurrence, Entomoplasmatales in B. dorsalis, B. correcta, B. scutellaris, B. zonata, Zeugodacus cucurbitae and Z. tau (0.8-14.3%) and Cardinium in B. dorsalis and Z. tau (0.9-5.8%), while none of the species tested, harbored infections with Arsenophonus. Infected populations showed a medium (between 10 and 90%) or low (< 10%) prevalence, ranging from 3 to 80% for Wolbachia, 2 to 33% for Entomoplasmatales and 5 to 45% for Cardinium. Wolbachia and Entomoplasmatales infections were found both in tropical and subtropical populations, the former mostly in India and the latter in various regions of India and Bangladesh. Cardinium infections were identified in both countries but only in subtropical populations. Phylogenetic analysis revealed the presence of Wolbachia with some strains belonging either to supergroup B or supergroup A. Sequence analysis revealed deletions of variable length and nucleotide variation in three Wolbachia genes. Spiroplasma strains were characterized as citri-chrysopicola-mirum and ixodetis strains while the remaining Entomoplasmatales to the Mycoides-Entomoplasmataceae clade. Cardinium strains were characterized as group A, similar to strains infecting Encarsia pergandiella. CONCLUSIONS: Our results indicated that in the Southeast natural populations examined, supergroup A Wolbachia strain infections were the most common, followed by Entomoplasmatales and Cardinium. In terms of diversity, most strains of each bacterial genus detected clustered in a common group. Interestingly, the deletions detected in three Wolbachia genes were either new or similar to those of previously identified pseudogenes that were integrated in the host genome indicating putative horizontal gene transfer events in B. dorsalis, B. correcta and B. zonata.


Assuntos
Bactérias/classificação , RNA Ribossômico 16S/genética , Tephritidae/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Transferência Genética Horizontal , Controle Biológico de Vetores , Filogenia , Simbiose
15.
BMC Microbiol ; 19(Suppl 1): 283, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870309

RESUMO

BACKGROUND: The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males. RESULTS: AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males' survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet. CONCLUSIONS: Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males' fitness, although the physiological mechanisms still need further studies.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Comportamento Sexual Animal/efeitos dos fármacos , Tephritidae/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Estado Nutricional , Controle Biológico de Vetores , Filogenia , América do Sul , Tephritidae/efeitos dos fármacos , Tephritidae/microbiologia
16.
BMC Microbiol ; 18(Suppl 1): 148, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470196

RESUMO

BACKGROUND: Microbiota plays an important role in the biology, ecology and evolution of insects including tsetse flies. The bacterial profile of 3 Glossina palpalis gambiensis laboratory colonies was examined using 16S rRNA gene amplicon sequencing to evaluate the dynamics of the bacterial diversity within and between each G. p. gambiensis colony. RESULTS: The three G. p. gambiensis laboratory colonies displayed similar bacterial diversity indices and OTU distribution. Larval guts displayed a higher diversity when compared with the gastrointestinal tract of adults while no statistically significant differences were observed between testes and ovaries. Wigglesworthia and Sodalis were the most dominant taxa. In more detail, the gastrointestinal tract of adults was more enriched by Wigglesworthia while Sodalis were prominent in gonads. Interestingly, in larval guts a balanced co-existence between Wigglesworthia and Sodalis was observed. Sequences assigned to Wolbachia, Propionibacterium, and Providencia were also detected but to a much lesser degree. Clustering analysis indicated that the bacterial profile in G. p. gambiensis exhibits tissue tropism, hence distinguishing the gut bacterial profile from that present in reproductive organs. CONCLUSIONS: Our results indicated that age, gender and the origin of the laboratory colonies did not significantly influence the formation of the bacterial profile, once these populations were kept under the same rearing conditions. Within the laboratory populations a tissue tropism was observed between the gut and gonadal bacterial profile.


Assuntos
Bactérias/classificação , Variação Genética , Microbiota , Moscas Tsé-Tsé/microbiologia , Animais , Bactérias/isolamento & purificação , Enterobacteriaceae/genética , Feminino , Trato Gastrointestinal/microbiologia , Masculino , RNA Ribossômico 16S/genética , Simbiose , Wigglesworthia/genética , Wolbachia/genética
17.
BMC Microbiol ; 18(Suppl 1): 147, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470190

RESUMO

BACKGROUND: Tsetse flies (Diptera: Glossinidae) are solely responsible for the transmission of African trypanosomes, causative agents of sleeping sickness in humans and nagana in livestock. Due to the lack of efficient vaccines and the emergence of drug resistance, vector control approaches such as the sterile insect technique (SIT), remain the most effective way to control disease. SIT is a species-specific approach and therefore requires accurate identification of natural pest populations at the species level. However, the presence of morphologically similar species (species complexes and sub-species) in tsetse flies challenges the successful implementation of SIT-based population control. RESULTS: In this study, we evaluate different molecular tools that can be applied for the delimitation of different Glossina species using tsetse samples derived from laboratory colonies, natural populations and museum specimens. The use of mitochondrial markers, nuclear markers (including internal transcribed spacer 1 (ITS1) and different microsatellites), and bacterial symbiotic markers (Wolbachia infection status) in combination with relatively inexpensive techniques such as PCR, agarose gel electrophoresis, and to some extent sequencing provided a rapid, cost effective, and accurate identification of several tsetse species. CONCLUSIONS: The effectiveness of SIT benefits from the fine resolution of species limits in nature. The present study supports the quick identification of large samples using simple and cost effective universalized protocols, which can be easily applied by countries/laboratories with limited resources and expertise.


Assuntos
Insetos Vetores/classificação , Tipagem Molecular/métodos , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/microbiologia , Wolbachia/genética , Animais , DNA Espaçador Ribossômico/genética , Eletroforese em Gel de Ágar , Mitocôndrias/genética , Tipagem Molecular/economia , Reação em Cadeia da Polimerase , Simbiose/genética
18.
BMC Microbiol ; 18(Suppl 1): 153, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470187

RESUMO

BACKGROUND: Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS: The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION: The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.


Assuntos
Citomegalovirus/isolamento & purificação , Trypanosoma/isolamento & purificação , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Moscas Tsé-Tsé/virologia , Wolbachia/isolamento & purificação , África Ocidental , Animais , Citomegalovirus/patogenicidade , Geografia , Gana , Humanos , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Insetos Vetores/virologia , Prevalência , Spiroplasma/isolamento & purificação , Simbiose
19.
PLoS Pathog ; 10(9): e1004369, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25233341

RESUMO

In the last decade, bacterial symbionts have been shown to play an important role in protecting hosts against pathogens. Wolbachia, a widespread symbiont in arthropods, can protect Drosophila and mosquito species against viral infections. We have investigated antiviral protection in 19 Wolbachia strains originating from 16 Drosophila species after transfer into the same genotype of Drosophila simulans. We found that approximately half of the strains protected against two RNA viruses. Given that 40% of terrestrial arthropod species are estimated to harbour Wolbachia, as many as a fifth of all arthropods species may benefit from Wolbachia-mediated protection. The level of protection against two distantly related RNA viruses--DCV and FHV--was strongly genetically correlated, which suggests that there is a single mechanism of protection with broad specificity. Furthermore, Wolbachia is making flies resistant to viruses, as increases in survival can be largely explained by reductions in viral titer. Variation in the level of antiviral protection provided by different Wolbachia strains is strongly genetically correlated to the density of the bacteria strains in host tissues. We found no support for two previously proposed mechanisms of Wolbachia-mediated protection--activation of the immune system and upregulation of the methyltransferase Dnmt2. The large variation in Wolbachia's antiviral properties highlights the need to carefully select Wolbachia strains introduced into mosquito populations to prevent the transmission of arboviruses.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vírus de Insetos/patogenicidade , Simbiose/imunologia , Viroses/imunologia , Wolbachia/fisiologia , Animais , Drosophila/microbiologia , Drosophila/virologia , Feminino , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Viroses/microbiologia , Viroses/virologia , Wolbachia/classificação
20.
PLoS Genet ; 9(4): e1003381, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593012

RESUMO

The importance of host-specialization to speciation processes in obligate host-associated bacteria is well known, as is also the ability of recombination to generate cohesion in bacterial populations. However, whether divergent strains of highly recombining intracellular bacteria, such as Wolbachia, can maintain their genetic distinctness when infecting the same host is not known. We first developed a protocol for the genome sequencing of uncultivable endosymbionts. Using this method, we have sequenced the complete genomes of the Wolbachia strains wHa and wNo, which occur as natural double infections in Drosophila simulans populations on the Seychelles and in New Caledonia. Taxonomically, wHa belong to supergroup A and wNo to supergroup B. A comparative genomics study including additional strains supported the supergroup classification scheme and revealed 24 and 33 group-specific genes, putatively involved in host-adaptation processes. Recombination frequencies were high for strains of the same supergroup despite different host-preference patterns, leading to genomic cohesion. The inferred recombination fragments for strains of different supergroups were of short sizes, and the genomes of the co-infecting Wolbachia strains wHa and wNo were not more similar to each other and did not share more genes than other A- and B-group strains that infect different hosts. We conclude that Wolbachia strains of supergroup A and B represent genetically distinct clades, and that strains of different supergroups can co-exist in the same arthropod host without converging into the same species. This suggests that the supergroups are irreversibly separated and that barriers other than host-specialization are able to maintain distinct clades in recombining endosymbiont populations. Acquiring a good knowledge of the barriers to genetic exchange in Wolbachia will advance our understanding of how endosymbiont communities are constructed from vertically and horizontally transmitted genes.


Assuntos
Drosophila , Genoma Bacteriano , Simbiose , Wolbachia , Animais , Drosophila/genética , Drosophila/microbiologia , Genômica , Nova Caledônia , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Seicheles , Especificidade da Espécie , Simbiose/genética , Simbiose/fisiologia , Wolbachia/genética , Wolbachia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA