Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 150: 113058, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658229

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Mucosa Nasal , SARS-CoV-2
2.
Sci Rep ; 9(1): 11493, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391513

RESUMO

Acute respiratory infections, a large part being of viral origin, constitute a major public health issue. To propose alternative and/or new therapeutic approaches, it is necessary to increase our knowledge about the interactions between respiratory viruses and their primary cellular targets using the most biologically relevant experimental models. In this study, we used RNAseq to characterize and compare the transcriptomic signature of infection induced by different major respiratory viruses (Influenza viruses, hRSV and hMPV) in a model of reconstituted human airway epithelia. Our results confirm the importance of several cellular pathways commonly or specifically induced by these respiratory viruses, such as the innate immune response or antiviral defense. A very interesting common feature revealed by the global virogenomic signature shared between hRSV, hMPV and influenza viruses is the global downregulation of cilium-related gene expression, in good agreement with experimental evaluation of mucociliary clearance. Beyond providing new information about respiratory virus/host interactions, our study also underlines the interest of using biologically relevant experimental models to study human respiratory viruses.


Assuntos
Regulação da Expressão Gênica/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Mucosa Respiratória/imunologia , Infecções Respiratórias/imunologia , Transcriptoma/imunologia , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Cílios/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/genética , Influenza Humana/imunologia , Macaca mulatta , Metapneumovirus/imunologia , RNA-Seq , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Vírus Sincicial Respiratório Humano/imunologia , Infecções Respiratórias/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA