Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Res ; 257: 119333, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38849000

RESUMO

This review is aimed at researchers in air pollution control seeking to understand the latest advancements in volatile organic compound (VOC) removal. Implementing of plasma-catalysis technology for the removal of volatile organic compounds (VOCs) led to a significant boost in terms of degradation yield and mineralization rate with low by-product formation. The plasma-catalysis combination can be used in two distinct ways: (I) the catalyst is positioned downstream of the plasma discharge, known as the "post plasma catalysis configuration" (PPC), and (II) the catalyst is located in the plasma zone and exposed directly to the discharge, called "in plasma catalysis configuration" (IPC). Coupling these two technologies, especially for VOCs elimination has attracted the interest of many researchers in recent years. The term "synergy" is widely reported in their works and associated with the positive effect of the plasma catalysis combination. This review paper investigates the state of the art of newly published papers about catalysis, photocatalysis, non-thermal plasma, and their combination for VOC removal application. The focus is on understanding different synergy sources operating mutually between plasma and catalysis discussed and classified into two main parts: the effect of the plasma discharge on the catalyst and the effect of the catalyst on plasma discharge. This approach has the potential for application in air purification systems for industrial processes or indoor environments.


Assuntos
Poluentes Atmosféricos , Gases em Plasma , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Catálise , Gases em Plasma/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle
2.
J Environ Manage ; 331: 117286, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640645

RESUMO

Consideration is now being given to the use of metal coagulants to remove turbidity from drinking water and wastewater. Concerns about the long-term impact of non-biodegradable sludge on human health and the potential contamination of aquatic systems are gaining popularity. Recently, alternative biocoagulants have been suggested to address these concerns. In this study, using a 1 M sodium chloride (NaCl) solution, the active coagulating agent was extracted from Pinus halepensis Mill. Seed, and used for the first time to remove Congo red dye, the influence of numerous factors on dye removal was evaluated in order to make comparisons with conventional coagulants. The application of biocoagulant was shown to be very successful, with coagulant dosages ranging from 3 to 12 mL L-1 achieving up to 80% dye removal and yielding 28 mL L-1 of sludge. It was also found that biocoagulant is extremely pH sensitive with an optimum operating pH of 3. Ferric chloride, on the other hand, achieved similar removal rate with higher sludge production (46 mL L-1) under the same conditions. A Fourier Transform Infrared Spectroscopy and proximate composition analysis were undertaken to determine qualitatively the potential active coagulant ingredient in the seeds and suggested the involvement of proteins in the coagulation-flocculation mechanism. The evaluation criteria of the Support vector machine_Gray wolf optimizer model in terms of statistical coefficients and errors reveals quite interesting results and demonstrates the performance of the model, with statistical coefficients close to 1 (R = 0.9998, R2 = 0.9995 and R2 adj = 0.9995) and minimal statistical errors (RMSE = 0.5813, MSE = 0.3379, EPM = 0 0.9808, ESP = 0.9677 and MAE = 0.2382). The study findings demonstrate that Pinus halepensis Mill. Seed extract might be a novel, environmentally friendly, and easily available coagulant for water and wastewater treatment.


Assuntos
Pinus , Purificação da Água , Humanos , Vermelho Congo/análise , Esgotos/química , Pinus/química , Águas Residuárias , Floculação , Sementes/química , Purificação da Água/métodos , Cloreto de Sódio
3.
J Environ Manage ; 299: 113588, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34488111

RESUMO

Nowadays, air pollution is an increasingly important topic, as environmental regulations require limiting pollutant emissions. This problem requires new techniques to reduce emissions by either improving the current emission control systems and processes or installing new hybrid treatment systems. These are of broad diversity, and every system has its advantages and disadvantages. The tendency is, accordingly, to combine various techniques to achieve more acceptable and suitable treatment. Recent studies suggest that the combination of photocatalysis and plasma in a reactor can offer attractive pollutant treatment efficiency with a minimum of partially oxidized by-products than that of these processes taken separately. However, there is little review of the capability of this pairing to treat different brands of pollutants. Besides, available data concerning reactor design with flows treated 10 to 1000 times higher than those studied at the lab scale. This review paid particular attention to determine the reaction mechanisms in terms of engineering and design of combination reactors (plasma and catalysis). Likewise, we developed the effect of critical parameters such as pollutant load, relative humidity, and flow rate to understand the degradation kinetics of specific pollutants individually by using plasma and photocatalysis. Additionally, this review compares different designs of cold plasma reactors combination with heterogeneous catalysis with special attention on synergistic and antagonistic effects of using plasma and photocatalysis processes at the laboratory, pilot, and industrial scales. Therefore, the elements discussed in this review stick well to the first theme on pollution prevention of the special issue concerning pollution prevention and the application of clean technologies to promote a circular (bio) economy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluição do Ar/prevenção & controle , Catálise , Cinética , Oxirredução
4.
Water Sci Technol ; 82(4): 695-703, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32970622

RESUMO

The current work investigates the removal of two hazardous macrolide molecules, spiramycin and tylosin, by photodegradation under external UV-light irradiation conditions in a slurry photoreactor using titanium dioxide as a catalyst. The kinetics of degradation and effects of main process parameters such as catalyst dosage, initial macrolide concentration, light intensity and stirring rate on the degradation rate of pollutants have been examined in detail in order to obtain the optimum operational conditions. It was found that the process followed a pseudo first-order kinetics according to the Langmuir-Hinshelwood model. The optimum conditions for the degradation of spiramycin and tylosin were low compound concentration, 1 g L-1 of catalyst dosage, 100 W m-2 light intensity and 560 rpm stirring rate. Then, a maximum removal (more than 90%) was obtained after 300 min of irradiation time. Furthermore, results show that the selection of optimized operational parameters leads to satisfactory total organic carbon removal rate (up to 51%) and biochemical oxygen demand to chemical oxygen demand ratio (∼1) confirming the good potential of this technique to remove complex macrolides from aqueous solutions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Cinética , Macrolídeos , Fotólise , Titânio , Raios Ultravioleta
5.
Water Sci Technol ; 73(11): 2627-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27232398

RESUMO

The present work investigates the photocatalytic degradation efficiency of biorecalcitrant macrolide antibiotics in a circulating tubular photoreactor. As target pollutants, spiramycin (SPM) and tylosin (TYL) were considered in this study. The photoreactor leads to the use of an immobilized titanium dioxide on non-woven paper under artificial UV-lamp irradiation. Maximum removal efficiency was achieved at the optimum conditions of natural pH, low pollutant concentration and a 0.35 L min(-1) flow rate. A Langmuir-Hinshelwood model was used to fit experimental results and the model constants were determined. Moreover, the total organic carbon analysis reveals that SPM and TYL mineralization is not complete. In addition, the study of the residence time distribution allowed us to investigate the flow regime of the reactor. Electrical energy consumption for photocatalytic degradation of macrolides using circulating TiO2-coated paper photoreactor was lower compared with some reported photoreactors used for the elimination of pharmaceutic compounds. A repetitive reuse of the immobilized catalyst was also studied in order to check its photoactivity performance.


Assuntos
Macrolídeos/química , Fotólise , Titânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Antibacterianos/química , Catálise , Fontes de Energia Elétrica , Hidrodinâmica , Modelos Químicos , Projetos Piloto , Raios Ultravioleta
6.
Environ Technol ; 36(1-4): 1-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25409577

RESUMO

A combined process coupling photocatalysis and a biological treatment was investigated for the removal of Bezacryl yellow (BZY), an industrial-use textile dye. Photocatalytic degradation experiments of BZY were carried out in two stirred reactors, operating in batch mode with internal or external irradiation. Two photocatalysts (TiO2P25 and TiO2PC500) were tested and the dye degradation was studied for different initial pollutant concentrations (10-117 mg L(-1)). A comparative study showed that the photocatalytic degradation led to the highest degradation and mineralization yields in a stirred reactor with internal irradiation in the presence of the P25 catalyst. Regardless of the photocatalyst, discoloration yields up to 99% were obtained for 10 and 20 mg L(-1) dye concentrations in the reactor with internal irradiation. Moreover, the first-order kinetic and Langmuir-Hinshelwood models were examined by using the nonlinear method for different initial concentrations and showed that the two models lead to completely different predicted kinetics suggesting that they were completely different.According to the BOD5/ Chemical oxygen demand (COD) ratio, the non-treated solution (20 mg L(-1) of BZY) was estimated as non-biodegradable. After photocatalytic pretreatment of bezacryl solution containing 20 mg/L of initial dye, the biodegradability test showed a BOD5/COD ratio of 0.5, which is above the limit of biodegradability (0.4). These results were promising regarding the feasibility of combining photocatalysis and biological mineralization for the removal of BZY.


Assuntos
Corantes/isolamento & purificação , Fotoquímica/instrumentação , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Catálise , Corantes/química , Corantes/efeitos da radiação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Luz , Modelos Químicos , Fotoquímica/métodos , Indústria Têxtil , Titânio/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos
7.
Environ Sci Pollut Res Int ; 30(13): 35745-35756, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538222

RESUMO

Photocatalytic oxidation (PCO) using a TiO2 catalyst is an effective technique to remove gaseous volatile organic compounds (VOCs). Herein, a lab-scale continuous reactor is used to investigate the photocatalytic performance toward ethylbenzene (EB) vapor removal over TiO2 nanoparticles immobilized on glass fiber tissue. The role of the reactive species in the removal of EB and the degradation pathway were studied. Firstly, the effect of key operating parameters such as EB concentration (13, 26, 60 mg/m3), relative humidity levels (From 5 to 80%), gas carrier composition (dry air + EB, O2 + EB and N2 + EB) and ultraviolet (UV) radiation wavelength (UV-A 365 nm, UV-C 254 nm) were explored. Then, using superoxide dismutase and tert-butanol as trapping agents, the real contribution of superoxide radical anion (O2.-) and hydroxyl radicals (OH.) to EB removal was quantified. The results show that (i) small water vapor content enhances the EB degradation; (ii) the reaction atmosphere plays an important role in the photocatalytic process; and (iii) oxygen atmosphere/UV-C radiation shows the highest EB degradation percentage. The use of radical scavengers confirms the major contribution of the hydroxyl radical to the photocatalytic mechanism with 75% versus 25% for superoxide radical anion.


Assuntos
Nanopartículas , Superóxidos , Espécies Reativas de Oxigênio , Gases , Titânio , Raios Ultravioleta , Catálise
8.
Chemosphere ; 295: 133809, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35122816

RESUMO

In this work, a solution for the treatment of toxic gases based on a photocatalytic process using TiO2 coated on a cellulosic support, has been investigated. Here, cyclohexane was chosen as the reference for testing its removal efficiency via a continuous front flow reactor as type A anti-gas filters. The photocatalytic support was firstly characterized by EDX, to confirm its elemental composition. Then, the experiments were carried out, starting with a batch reactor in order to evaluate the degradation efficiency of the photocatalytic media, as well as the monitoring of the photocatalytic process which allowed the establishing of a carbon mass balance corresponding to the stoichiometric number of our target pollutant. The transition to a continuous treatment with a front flow reactor aims to highlight the influence of the input concentration (0.29-1.78 mM m-3) under different flow rates (12, 18 and 36 L min-1). The relative humidity effect was also investigated (from 5 to 90% of humidity) where an optimum rate was obtained around 35-45%. In addition, the mineralization rate was monitored. The major rates obtained were for a cyclohexane input concentration of 0.29 mM m-3 in wet condition (38%) at an air flow rate of 18 L min-1, where the CO2 selectivity reached 77% for an abatement of 62%. In order to understand the limiting steps of the photocatalytic process, a model considering the reactor geometry and the hydraulic flow was developed. The obtained results showed that the mass transfer must be considered in the photocatalytic process for a continuous treatment. The Langmuir-Hinshelwood bimolecular model was also developed to represent the influence of the humidity.


Assuntos
Poluentes Ambientais , Titânio , Catálise
9.
Environ Sci Pollut Res Int ; 26(19): 19035-19046, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30145753

RESUMO

In this study, the treatment of petroleum wastewater has been investigated by applying heterogeneous photocatalytic process using a recirculating annual reactor. An attempt has been made to study the effect of operating parameters such as TiO2 load, initial concentration of the pollutant, emitted photonic flux, and pH of the solution. The degradation efficiency of toluene and benzene, as target molecules, was studied. In fact, result showed that the toluene is better degraded alone than when it is in a mixture. The rate of elimination of toluene separately was 89.5%, while it was 76.19 and 79.55% in the binary (toluene/benzene) and the ternary mixtures (toluene/benzene/xylene), respectively. Moreover, the mineralization of the solution decreased more rapidly when toluene was pure with a rate of 83.13% compared to binary and ternary mixtures. A mathematical model is proposed taking into account the parameters influencing the process performances. The mass transfer step, the degradation, and the mineralization kinetics of the pollutants were defined as model parameters. To build the model, mass balances are written in bulk region and catalyst phase (solid phase). The degradation mechanism on solid phase is divided in two stages. Firstly, the removal of toluene gives an equivalent intermediate (EI). Secondly, EI is oxidized into carbon dioxide (CO2). This approach gives a good agreement between modeling and empirical data in terms of degradation and mineralization. It also allows for the simulation of toluene kinetics without knowing the plausible chemical pathway. A satisfactory fit with experimental data was obtained for the degradation and mineralization of toluene.


Assuntos
Indústria de Petróleo e Gás , Águas Residuárias/química , Purificação da Água/métodos , Benzeno/química , Catálise , Cinética , Oxirredução , Fotólise , Tolueno/química , Xilenos/química
10.
J Hazard Mater ; 357: 305-313, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29902725

RESUMO

This paper mainly deals with the isovaleraldehyde degradation with the help of a nonthermal plasma surface discharge (NPSD) coupled with photocatalysis. The efficiency of NPSD reactor, for gas treatment, was studied for different binary mixtures: (1) mixture of aldehydes (Isovaleraldehyde and Butyraldehyde) and (2) mixture of aldehyde and amine (Isovaleraldehyde and Trimethylamine). A planar continuous reactor is used to investigate the effect of addition of another pollutant on the performance of oxidation process. A synergetic effect was observed by combining NPSD and photocatalysis for the degradation of mixture of pollutants. In addition, combined NPSD/photocatalysis has significantly enhanced the CO2 selectivity, as compared to NPSD alone. This is attributed to the formation of more reactive species due to the presence of TiO2 in the plasma discharge zone. Moreover, ozone and UV light on TiO2, produced by plasma, have activated the surface leading to enhanced mineralization. In addition, the byproducts of each binary mixture were identified and evaluated.

11.
Environ Sci Pollut Res Int ; 21(19): 11178-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24573462

RESUMO

A proposal for scaling-up the photocatalytic reactors is described and applied to the coated catalytic walls with a thin layer of titanium dioxide under the near ultraviolet (UV) irradiation. In this context, the photocatalytic degradation of isovaleraldehyde in gas phase is studied. In fact, the removal capacity is compared at different continuous reactors: a photocatalytic cylindrical reactor, planar reactor, and pilot unit. Results show that laboratory results can be useful for reactor design and scale-up. The flowrate increases lead to the removal capacity increases also. For example, with pilot unit, when flowrate extends four times, the degradation rate varies from 0.14 to 0.38 g h(-1) mcat (-2). The influence of UV intensity is also studied. When this parameter increases, both degradation rate and overall mineralization are enhanced. Moreover, the effects of inlet concentration, flowrate, geometries, and size of reactors on the removal capacity are also studied.


Assuntos
Aldeídos/isolamento & purificação , Poluição Ambiental/prevenção & controle , Fotólise , Titânio/química , Raios Ultravioleta , Compostos Orgânicos Voláteis/química , Gerenciamento de Resíduos/métodos , Aldeídos/química , Catálise
12.
J Hazard Mater ; 166(2-3): 1244-9, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19167158

RESUMO

The present work involves the photocatalytic degradation of indole on a recirculating reactor. The effects of various factors as initial concentration of indole, catalyst-loading, pH, agitation and flow rate of the solution on the photodegradation were examined. The experimental results indicate that the optimal pH for indole elimination is about 6-7; the effect of catalyst loading shows an optimal value (1g/L) which is necessary to degrade indole; the increase of recirculating rate leads to a decrease of degradation rate due to the reduction of the residence time; the agitation speed has a slight influence on the indole degradation by improving the mass transfer step. Finally, L-H model was used to fit experimental results concerning the influence of experimental data. L-H model constants' were determined also.


Assuntos
Indóis/efeitos da radiação , Fotólise , Titânio/química , Raios Ultravioleta , Catálise , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Indóis/química , Resíduos Industriais/prevenção & controle , Cinética , Eliminação de Resíduos Líquidos/métodos
13.
Environ Sci Technol ; 41(8): 2908-14, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17533857

RESUMO

This study investigates the influence of inlet concentration and of flow rate on the degradation rate of two Volatile Fatty Acids (butyric and propionic acids). TiO2-coated nonwoven fiber textile was used as the photocatalyst in an annular plug-flow reactor at laminar flow regime. The kinetic follows a Langmuir-Hinshelwood form. The oxidation rate increased with the flow rate, which emphasizes the influence of the mass transfer. A first design equation is proposed considering that the mass transfer could be neglected. Despite a good accuracy of the model, the determined kinetic constants are dependent on the flow rate which highlights the contribution of the mass transfer rate on the global degradation rate. Thus, a new design equation which includes the mass transfer rate was developed. Using this model, the degradation rate can be determined for any given flow rate. Moreover, it allows the estimation of the contribution of mass transfer and chemical reaction steps at given experimental conditions; and thus providing an interesting tool for reactor optimization or design.


Assuntos
Ácidos Graxos Voláteis/química , Fotólise , Poluição do Ar/prevenção & controle , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA