Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vox Sang ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946160

RESUMO

BACKGROUND AND OBJECTIVES: The detection of treponemal antibodies, which are used to make a diagnosis of syphilis, is important both for diagnostic purposes and as a mandatory blood donor test in most countries. We evaluated the feasibility of using Kode Technology to make syphilis peptide red cell kodecytes for use in column agglutination serologic platforms. MATERIALS AND METHODS: Candidate Kode Technology function-spacer-lipid (FSL) constructs were made for the Treponema pallidum lipoprotein (TmpA) of T. pallidum, using the peptide and FSL selection algorithms, and then used to make kodecytes. Developmental kodecytes were evaluated against a large range of syphilis antibody reactive and non-reactive samples in column agglutination platforms and compared against established methodologies. Overall, 150 reactive and 2072 non-reactive Syphicheck assay (a modified T. pallidum particle agglutination) blood donor samples were used to evaluate the agreement rate of the developed kodecyte assay. RESULTS: From three FSL-peptide candidate constructs, one was found to be the most suitable for diagnostics. Of 150 Syphicheck assay reactive samples, 146 were TmpA-kodecyte reactive (97.3% agreement), compared with 58.0% with the rapid plasmin reagin (RPR) assay for the same samples. Against the 2072 expected syphilis non-reactive samples the agreement rate for TmpA-kodecytes was 98.8%. CONCLUSION: TmpA-kodecytes are viable for use as cost-effective serologic reagent red cells for the detection of treponemal antibodies to diagnose syphilis with a high level of specificity in blood centres. This kodecyte methodology also potentially allows for introduction of the reverse-algorithm testing into low-volume laboratories, by utilizing existing transfusion laboratory infrastructure.

2.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891913

RESUMO

Glycans of MVs are proposed to be candidates for mediating targeting specificity or at least promoting it. In contrast to exosomes, glycomic studies of MVs are largely absent. We studied the glycoprofile of endothelial cell-derived MVs using 21 plant lectins, and the results show the dominance of oligolactosamines and their α2-6-sialylated forms as N-glycans and low levels of α2-3-sialylated glycans. The low levels of α2-3-sialosides could not be explained by the action of extracellular glycosidases. Additionally, the level of some Man-containing glycans was also decreased in MVs. Spatial masking as the causative relationship between these low level glycans (as glycosphingolipids) by integral proteins or proteoglycans (thus, their lack of interaction with lectins) seems unlikely. The results suggest that integral proteins do not pass randomly into MVs, but instead only some types, differing in terms of their specific glycosylation, are integrated into MVs.


Assuntos
Células Endoteliais , Lectinas de Plantas , Polissacarídeos , Polissacarídeos/metabolismo , Polissacarídeos/química , Lectinas de Plantas/metabolismo , Lectinas de Plantas/química , Humanos , Células Endoteliais/metabolismo , Glicosilação , Micropartículas Derivadas de Células/metabolismo
3.
Xenotransplantation ; 30(3): e12799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988069

RESUMO

Carbohydrate-specific antibodies are significant mediators of xenograft rejection. This study analyzed the carbohydrate specificity of antibodies in baboons before and after xenotransplantation of organs or injection of porcine red blood cells from hDAF transgenic pigs, using a glycan array with structurally defined glycans. Antibodies against hyaluronic acid disaccharide (HA2) showed the highest reactivity at baseline and rose after xenogeneic exposure. We also investigated in the serum of baboons that underwent xenotransplantation with either hDAF or hDAF/hMCP transgenic pig organs and Lewis rats after hamster-skin xenotransplantation the specificity of anti-HA antibodies on a glycan microarray representing HA oligosaccharides containing from two to 40 saccharides. Notably, the HA oligosaccharides ranging from 32 to 40 saccharides exhibited the highest antibody binding intensities at baseline in baboon and rat sera. After xenotransplantation, antibodies against HA38 and HA40 in baboons, and HA32, HA34, and HA36 in rats showed the highest titer increases. The changes of anti-HA IgM and IgG antibodies in rats after skin xenotransplantation was also confirmed by an ELISA specific for HA2, HA24, and HA85 antibodies. Thus, xenotransplantation is associated with increased antibodies against HA-oligosaccharides, which may represent a new target for intervention.


Assuntos
Anticorpos Heterófilos , Ácido Hialurônico , Animais , Suínos , Humanos , Ratos , Transplante Heterólogo , Ratos Endogâmicos Lew , Animais Geneticamente Modificados , Oligossacarídeos , Papio , Imunoglobulina G , Rejeição de Enxerto
4.
Scand J Immunol ; 95(6): e13157, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35285053

RESUMO

A possible mechanism of the immune tolerance in pregnancy is production of blocking antibodies which reside in placenta and protect foetal allogeneic cells from the mother's immune system. Their epitope specificity, as well as the nature of the biomolecules masked by them, is unknown. For better understanding of this phenomenon, we attempted to characterize the specificity of antibodies isolated from placentas of women with healthy pregnancy and pre-eclampsia (PE). It was found that: (1) the repertoire of placental antibodies is significantly less variable and qualitatively different from the peripheral blood; (2) with PE, the repertoire of placental antibodies is narrower than in healthy pregnancy; (3) some antibodies are found almost exclusively in the placenta, and some - only in the placenta of healthy women.


Assuntos
Placenta , Pré-Eclâmpsia , Anticorpos , Epitopos , Feminino , Humanos , Polissacarídeos , Gravidez
5.
Acta Virol ; 66(3): 263-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029091

RESUMO

Interferons (IFNs) mediate innate antiviral activity against many types of viruses, including influenza viruses. In light of their potential use as anti-influenza agents, we examined whether resistance to these host antiviral proteins can develop. We generated IFN-ß-resistant variants of the A/California/04/09 (H1N1) virus by serial passage in a human airway epithelial cell line, Calu-3, under IFN-ß selective pressure. The combination of specific mutations (i.e., L373I in PB1, K154E1, D222G1, I56V2, and V122I2 in HA, and M269I in NA) correlated with decreased ability of the virus to induce expression of IFN (IFNB1, IFNL1, and IFNL2/3) and IFN-stimulated genes (IFIT1, IFIT3, OAS1, IRF7, and MX1) by target respiratory epithelial cells. In addition, the IFN-induced mutations were associated with decreased HA binding affinity to α2,6 sialyl receptors, reduced NA enzyme catalytic activity, and decreased polymerase transcription activity. Our findings demonstrate that the mutations in the influenza HA, NA, and PB1 proteins induced by IFN-b selective pressure significantly increase viral ability to productively infect and replicate in host cells. Keywords: influenza A virus; interferon-ß; lung epithelial cells; interferon response.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Antivirais/farmacologia , Citocinas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Interferon beta/genética , Interferons/genética , Interferons/farmacologia , Replicação Viral
6.
Bioconjug Chem ; 32(8): 1606-1616, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34181851

RESUMO

In the near future, the increase in the number of required tests for COVID-19 antibodies is expected to be many hundreds of millions. Obviously, this will be done using a variety of analytical methods and using different antigens, including peptides. In this work, we compare three method variations for detecting specific immunoglobulins directed against peptides of approximately 15-aa of the SARS-CoV-2 spike protein. These linear peptide epitopes were selected using antigenicity algorithms, and were synthesized with an additional terminal cysteine residue for their bioconjugation. In two of the methods, constructs were prepared where the peptide (F, function) is attached to a negatively charged hydrophilic spacer (S) linked to a dioleoylphosphatidyl ethanolamine residue (L, lipid) to create a function-spacer-lipid construct (FSL). These FSLs were easily and controllably incorporated into erythrocytes for serologic testing or in a lipid bilayer deposited on a polystyrene microplate for use in an enzyme immunoassays (EIA). The third method, also an EIA, used polyacrylamide conjugated peptides (peptide-PAA) prepared by controlled condensation of the cysteine residue of the peptide with the maleimide-derived PAA polymer which were immobilized on polystyrene microplates by physisorption of the polymer. In this work, we describe the synthesis of the PAA and FSL peptide bioconjugates, design of test systems, and comparison of the bioassays results, and discuss potential reasons for higher performance of the FSL conjugates, particularly in the erythrocyte-based serologic assay.


Assuntos
Anticorpos Antivirais/análise , Desenho de Fármacos , Peptídeos/química , Peptídeos/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Glycoconj J ; 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33783715

RESUMO

In this report, we describe the fluorescent labeling of bacterial polysaccharides (Escherichia coli O86:B7, Escherichia coli O19ab, Pseudomonas aeruginosa O10a10b, and Shigella flexneri 2b) at the "natural" amino group of their phosphoethanolamine moiety. Two protocols for labeling are compared: 1) on a scale of a few mg of the polysaccharide, with a dialysis procedure for purification from excessive reagents; and 2) on a scale of 0.1 mg of the polysaccharide, with a simple precipitation procedure instead of dialysis. The microscale version is sufficient for comfortable cytofluorometric analysis. The resulting probes were found to specifically bind to human dendritic cells in a dose-dependent manner. The used limited set of polysaccharides did not allow us even to get close to understanding which dendritic cell-associated lectins and which cognate polysaccharide epitopes are involved in recognition, but the proposed microscale protocol allows to generate a library of fluorescent probes for further mapping of the polysaccharide specificity of the dendritic cells.

8.
Transfusion ; 61(4): 1171-1180, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33590501

RESUMO

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic is having a major global impact, and the resultant response in the development of new diagnostics is unprecedented. The detection of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a role in managing the pandemic. We evaluated the feasibility of using SARS-CoV-2 peptide Kode Technology-modified red cells (C19-kodecytes) to develop an assay compatible with existing routine serologic platforms. STUDY DESIGN AND METHODS: A panel of eight unique red cells modified using Kode Technology function-spacer-lipid constructs and bearing short SARS-CoV-2 peptides was developed (C19-kodecyte assay). Kodecytes were tested against undiluted expected antibody-negative and -positive plasma samples in manual tube and three column agglutination technology (CAT) platforms. Parallel analysis with the same peptides in solid phase by enzyme immunoassays was performed. Evaluation samples included >120 expected negative blood donor samples and >140 COVID-19 convalescent plasma samples, with independent serologic analysis from two centers. RESULTS: Specificity (negative reaction rate against expected negative samples) in three different CAT platforms against novel C19-kodecytes was >91%, which correlated with published literature. Sensitivity (positive reaction rate against expected positive convalescent, PCR-confirmed samples) ranged from 82% to 97% compared to 77% with the Abbott Architect SARS-CoV-2 IgG assay. Manual tube serology was less sensitive than CAT. Enzyme immunoassay results with some Kode Technology constructs also had high sensitivity. CONCLUSIONS: C19-kodecytes are viable for use as serologic reagent red cells for the detection of SARS-CoV-2 antibody with routine blood antibody screening equipment.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19 , COVID-19 , Eritrócitos/metabolismo , SARS-CoV-2/metabolismo , COVID-19/sangue , COVID-19/diagnóstico , Humanos
9.
Biochemistry (Mosc) ; 86(3): 243-247, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33838626

RESUMO

Many viruses, beside binding to their main cell target, interact with other molecules that promote virus adhesion to the cell; often, these additional targets are glycans. The main receptor for SARS-CoV-2 is a peptide motif in the ACE2 protein. We studied interaction of the recombinant SARS-CoV-2 spike (S) protein with an array of glycoconjugates, including various sialylated, sulfated, and other glycans, and found that the S protein binds some (but not all) glycans of the lactosamine family. We suggest that parallel influenza infection will promote SARS-CoV-2 adhesion to the respiratory epithelial cells due to the unmasking of lactosamine chains by the influenza virus neuraminidase.


Assuntos
Amino Açúcares/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Polissacarídeos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Amino Açúcares/química , Sequência de Carboidratos , Humanos , Técnicas In Vitro , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
10.
Artigo em Inglês | MEDLINE | ID: mdl-32393488

RESUMO

Each year, 5% to 20% of the population of the United States becomes infected with influenza A virus. Combination therapy with two or more antiviral agents has been considered a potential treatment option for influenza virus infection. However, the clinical results derived from combination treatment with two or more antiviral drugs have been variable. We examined the effectiveness of cotreatment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhibitor, laninamivir, and interferon lambda 1 (IFN-λ1), against the emergence of drug-resistant virus variants in vitro We serially passaged pandemic A/California/04/09 [A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the presence or absence of increasing concentrations of laninamivir or laninamivir plus IFN-λ1. Surprisingly, laninamivir used in combination with IFN-λ1 promoted the emergence of the E119G NA mutation five passages earlier than laninamivir alone (passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in significantly reduced sensitivity to the NA inhibitors laninamivir (∼284-fold) and zanamivir (∼1,024-fold) and decreased NA enzyme catalytic activity (∼5-fold) compared to the parental virus. Moreover, the E119G NA mutation emerged together with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were selected more rapidly by combination treatment with laninamivir plus IFN-λ1 (passages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show that treatment with laninamivir alone or in combination with IFN-λ1 can lead to the emergence of drug-resistant influenza virus variants. The addition of IFN-λ1 in combination with laninamivir may promote acquisition of drug resistance more rapidly than treatment with laninamivir alone.


Assuntos
Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Interferons , Zanamivir , Antivirais/farmacologia , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Interferons/farmacologia , Neuraminidase/genética , Piranos , Ácidos Siálicos , Zanamivir/farmacologia
11.
Histochem Cell Biol ; 154(2): 135-153, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32335744

RESUMO

The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure-activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.


Assuntos
Galectina 3/metabolismo , Animais , Proteínas Sanguíneas , Galectina 3/química , Galectina 3/genética , Galectinas , Glicoconjugados/química , Glicoconjugados/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Análise Serial de Proteínas , Engenharia de Proteínas , Termodinâmica
13.
Glycoconj J ; 37(1): 129-138, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834559

RESUMO

Modification of vaccine carriers by decoration with glycans can enhance binding to and even targeting of dendritic cells (DCs), thus augmenting vaccine efficacy. To find a specific glycan-"vector" it is necessary to know glycan-binding profile of DCs. This task is not trivial; the small number of circulating blood DCs available for isolation hinders screening and therefore advancement of the profiling. It would be more convenient to employ long-term cell cultures or even primary DCs from murine blood. We therefore examined whether THP-1 (human monocyte cell line) and DC2.4 (immature murine DC-like cell line) could serve as a model for human DCs. These cells were probed with a set of glycans previously identified as binding to circulating human CD14low/-CD16+CD83+ DCs. In addition, we tested a subpopulation of murine CD14low/-CD80+СD11c+CD16+ cells reported as relating to the human CD14low/-CD16+CD83+ cells. Manα1-3(Manα1-6)Manß1-4GlcNAcß1-4GlcNAcß bound to both the cell lines and the murine CD14low/-CD80+СD11c+CD16+ cells. Primary cells, but not the cell cultures, were capable of binding GalNAcα1-3Galß (Adi), the most potent ligand for binding to human circulating DCs. In conclusion, not one of the studied cell lines proved an adequate model for DCs processes involving lectin binding. Although the glycan-binding profile of BYRB-Rb (8.17)1Iem mouse DCs could prove useful for assessing human DCs, important glycan interactions were missing, a situation which was aggravated when employing cells from the BALB/c strain. Accordingly, one must treat results from murine work with caution when seeking vaccine targeting of human DCs, and certainly should avoid cell lines such as THP-1 and DC2.4 cells.


Assuntos
Células Dendríticas/metabolismo , Polissacarídeos/metabolismo , Animais , Humanos , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/química , Ligação Proteica , Células THP-1
14.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357469

RESUMO

Today pre-eclampsia (PE) is considered as a disease of various theories; still all of them agree that endothelial dysfunction is the leading pathogenic factor. Endothelial dysfunction is a sequence of permanent immune activation, resulting in the change of both the phenotype and the functions of an endothelial cell and of the extracellular layer associated with the cell membrane-endothelial glycocalyx (eGC). Numerous studies demonstrate that eGC mediates and regulates the key functions of endothelial cells including regulation of vascular tone and thromboresistance; and these functions are disrupted during PE. Taking into account that eGC and its components undergo alterations under pathological conditions leading to endothelial activation, it is supposed that eGC plays a certain role in pathogenesis of PE. Envisaging the eGC damage as a key factor of PE, might be a new approach to prevention, treatment, and rehabilitation of patients with PE. This approach could include the development of drugs protecting eGC and promoting regeneration of this structure. Since the issue of PE is far from being solved, any effort in this direction might be valuable.


Assuntos
Endotélio Vascular/patologia , Glicocálix/metabolismo , Pré-Eclâmpsia/patologia , Endotélio Vascular/metabolismo , Feminino , Regulação da Expressão Gênica , Glicocálix/patologia , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez
15.
Glycobiology ; 29(8): 593-607, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31091305

RESUMO

Discoveries on involvement of glycan-protein recognition in many (patho)physiological processes are directing attention to exploring the significance of a fundamental structural aspect of sugar receptors beyond glycan specificity, i.e., occurrence of distinct types of modular architecture. In order to trace clues for defining design-functionality relationships in human lectins, a lectin's structural unit has been used as source material for engineering custom-made variants of the wild-type protein. Their availability facilitates comparative analysis toward the stated aim. With adhesion/growth-regulatory human galectin-1 as example, the strategy of evaluating how changes of its design (here, from the homodimer of non-covalently associated domains to (i) linker-connected di- and tetramers and (ii) a galectin-3-like protein) affect activity is illustrated by using three assay systems of increasing degree of glycan complexity. Whereas calorimetry with two cognate disaccharides and array testing with 647 (glyco)compounds disclosed no major changes, galectin histochemical staining profiles of tissue sections that present natural glycome complexity revealed differences between wild-type and linker-connected homo-oligomers as well as between the galectin-3-like variant and wild-type galectin-3 for cell-type positivity, level of intensity at the same site and susceptibility for inhibition by a bivalent glycocompound. These results underscore the strength of the documented approach. Moreover, they give direction to proceed to (i) extending its application to other members of this lectin family, especially galectin-3 and (ii) then analyzing impact of architectural alterations on cell surface lattice formation and ensuing biosignaling systematically, considering the variants' potential for translational medicine.


Assuntos
Galectina 1/metabolismo , Processamento de Proteína Pós-Traducional , Amino Açúcares/metabolismo , Animais , Sítios de Ligação , Epididimo/metabolismo , Galectina 1/química , Humanos , Jejuno/metabolismo , Lactose/análogos & derivados , Lactose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Multimerização Proteica
16.
Chembiochem ; 20(2): 131-133, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019804

RESUMO

Agglutination of red blood cells (RBCs) remains the only practical method for routine use for ABH typing in clinical practice. However, exact mechanistic details of agglutination are not yet thoroughly studied. In this research, RBCs of blood group O were converted to blood group A through two approaches: by chemical ligation of the cells' glycocalyx with synthetic blood group A tetrasaccharide, and by insertion of synthetic glycolipid carrying the same A antigen into the cells' membranes. The O→A ligated RBCs and natural A RBCs showed comparable agglutination characteristics with antibodies. As expected, RBCs with inserted glycolipid showed lower agglutination scores. This approach could help cell biologists in site-specific and cell-friendly modification of glycocalyx by other ligands.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Eritrócitos/metabolismo , Humanos , Ligantes , Estrutura Molecular
17.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29187537

RESUMO

Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus, respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged, and many nonpathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, nonpathogenic lagoviruses, and EBHSV potentially play a role in determining the host range and virulence of lagoviruses. We observed binding to A, B, or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits (Oryctolagus cuniculus), which have recently been classified as GI strains. However, we could not explain the emergence of virulence, since similar glycan specificities were found in several pathogenic and nonpathogenic strains. In contrast, EBHSV, recently classified as GII.1, bound to terminal ß-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species (Oryctolagus cuniculus, Lepuseuropaeus, and Sylvilagus floridanus) showed species-specific patterns regarding susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagovirus host specificity and range.IMPORTANCE Lagoviruses constitute a genus of the family Caliciviridae comprising highly pathogenic viruses, RHDV and EBHSV, that infect rabbits and hares, respectively. Recently, nonpathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs have been observed. The mechanisms responsible for the emergence of pathogenicity and host species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely portals of virus entry. Here, we studied the glycan-binding properties of novel pathogenic and nonpathogenic strains looking for a link between glycan binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host ranges of the virus strains, suggesting that glycan diversity contributes to lagovirus host ranges.


Assuntos
Infecções por Caliciviridae/virologia , Vírus da Doença Hemorrágica de Coelhos/fisiologia , Lagomorpha/virologia , Lagovirus/fisiologia , Polissacarídeos/metabolismo , Virulência , Ligação Viral , Animais , Infecções por Caliciviridae/metabolismo , Suscetibilidade a Doenças , Lebres , Lagomorpha/classificação , Lagomorpha/metabolismo , Filogenia , Coelhos , Especificidade da Espécie
18.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807224

RESUMO

Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE: Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U.S. swine population in the mid-1990s, but they are different from both these ancestral viruses and current circulating human seasonal H3N2 strains in terms of their antigenic characteristics as measured by hemagglutination inhibition (HI) assay. In this study, we identified amino acids in antigenic site B of the surface glycoprotein hemagglutinin (HA) that explain the antigenic difference between A(H3N2)v and the ancestral H3N2 strains. These amino acid mutations also alter binding to minor human-type glycans, suggesting that host adaptation may contribute to the selection of antigenically distinct H3N2 variants which pose a threat to public health.


Assuntos
Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Variação Antigênica , Antígenos Virais/genética , Antígenos Virais/imunologia , Epitopos/genética , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Mutação , Infecções por Orthomyxoviridae/metabolismo , Fenótipo
19.
Glycoconj J ; 35(2): 191-203, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29388006

RESUMO

Dendritic cells (DCs) play crucial roles in innate and adaptive immune response, for which reason targeting antigen to these cells is an important strategy for improvement of vaccine development. To this end, we explored recognition of DCs lectins by glycans. For selection of the glycan "vector", a library of 229 fluorescent glycoprobes was employed to assess interaction with the CD14low/-CD16+CD83+ blood mononuclear cell population containing the DCs known for their importance in antigen presentation to T-lymphocytes. It was found that: 1) the glycan-binding profiles of this CD14low/-CD16+CD83+ subpopulation were similar but not identical to DCs of monocyte origin (moDCs); 2) the highest percentage of probe-positive cells in this CD14 low/-CD16+CD83+ subpopulation was observed for GalNAcα1-2Galß (Adi), (Neu5Acα)3 and three mannose-reach glycans; 3) subpopulation of CD14low/-CD16+ cells preferentially bound 4'-O-Su-LacdiNAc. Considering the published data on specificity of DCs binding, the glycans showing particular selectivity for the CD14 low/-CD16+CD83+ cells are likely interacting with macrophage galactose binding lectin (MGL), siglec-7 and dectin-2. In contrast, DC-SIGN is not apparently involved, even in case of mannose-rich glycans. Taking into consideration potential in vivo competition between glycan "vectors" and glycans within glycocalyx, attempting to target vaccine to DCs glycan-binding receptors should focus on Adi and (Neu5Acα)3 as the most promising vectors.


Assuntos
Células Dendríticas/metabolismo , Lectinas/metabolismo , Monócitos/metabolismo , Polissacarídeos/metabolismo , Humanos , Lectinas/química , Ligação Proteica
20.
J Chem Inf Model ; 58(9): 1889-1901, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30086239

RESUMO

Protein-carbohydrate interactions are significant in a wide range of biological processes, disruption of which has been implicated in many different diseases. The capability of glycan-binding proteins (GBPs) to specifically bind to the corresponding glycans allows GBPs to be utilized in glycan biomarker detection or conversely to serve as targets for therapeutic intervention. However, understanding the structural origins of GBP specificity has proven to be challenging due to their typically low binding affinities (mM) and their potential to display broad or complex specificities. Here we perform molecular dynamics (MD) simulations and post-MD energy analyses with the Poisson-Boltzmann and generalized Born solvent models (MM-PB/GBSA) of the Erythrina cristagalli lectin (ECL) with its known ligands, and with new cocrystal structures reported herein. While each MM-PB/GBSA parametrization resulted in different estimates of the desolvation free energy, general trends emerged that permit us to define GBP binding preferences in terms of ligand substructure specificity. Additionally, we have further decomposed the theoretical interaction energies into contributions made between chemically relevant functional groups. Based on these contributions, the functional groups in each ligand can be assembled into a pharmacophore comprised of groups that are either critical for binding, or enhance binding, or are noninteracting. It is revealed that the pharmacophore for ECL consists of the galactopyranose (Gal) ring atoms along with C6 and the O3 and O4 hydroxyl groups. This approach provides a convenient method for identifying and quantifying the glycan pharmacophore and provides a novel method for interpreting glycan specificity that is independent of residue-level glycan nomenclature. A pharmacophore approach to defining specificity is readily transferable to molecular design software and, therefore, may be particularly useful in designing therapeutics (glycomimetics) that target GBPs.


Assuntos
Carboidratos/química , Lectinas de Plantas/química , Configuração de Carboidratos , Cristalização , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA