Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R507-R514, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586888

RESUMO

Diets varying in macronutrient composition, energy density, and/or palatability may cause differences in outcome of bariatric surgery. In the present study, rats feeding a healthy low-fat (LF) diet or an obesogenic high-fat/sucrose diet (HF/S) were either subjected to Roux-en-Y gastric bypass surgery (RYGB) or sham surgery, and weight loss trajectories and various energy balance parameters were assessed. Before RYGB, rats eating an HF/S (n = 14) diet increased body weight relative to rats eating an LF diet (n = 20; P < 0.01). After RYGB, absolute weight loss was larger in HF/S (n = 6) relative to LF feeding (n = 6) rats, and this was associated with reduced cumulative energy intake (EI; P < 0.05) and increased locomotor activity (LA; P < 0.05-0.001), finally leading to similar levels of reduced body fat content in HF/S and LF rats 3 wk after surgery. Regression analysis revealed that variation in RYGB-induced body weight loss was best explained by models including 1) postoperative cumulative EI and preoperative body weight (R2 = 0.87) and 2) postoperative cumulative EI and diet (R2 = 0.79), each without significant contribution of LA. Particularly rats on the LF diet became transiently more hypothermic and circadianally arrhythmic following RYGB (i.e., indicators of surgery-associated malaise) than HF/S feeding rats. Our data suggest that relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery, yet it promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.NEW & NOTEWORTHY Relative to feeding an LF diet, continued feeding an HF/S diet does not negatively impact recovery from RYGB surgery in rats. Relative to feeding an LF diet, continued feeding an HF/S diet promotes RYGB-induced weight loss. The RYGB-induced weight loss is primarily explained by reduced cumulative EI and higher preoperative body weight, leading to comparably low levels of body fat content in HF/S and LF feeding rats.


Assuntos
Ingestão de Energia , Derivação Gástrica , Ratos Wistar , Redução de Peso , Animais , Masculino , Ratos , Metabolismo Energético , Dieta Hiperlipídica , Peso Corporal , Obesidade/fisiopatologia , Obesidade/cirurgia , Obesidade/metabolismo , Restrição Calórica
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163456

RESUMO

Dysregulated energy metabolism is a major contributor to a multitude of pathologies, including obesity and diabetes. Understanding the regulation of metabolic homeostasis is of utmost importance for the identification of therapeutic targets for the treatment of metabolically driven diseases. We previously identified the deubiquitinase OTUB1 as substrate for the cellular oxygen sensor factor-inhibiting HIF (FIH) with regulatory effects on cellular energy metabolism, but the physiological relevance of OTUB1 is unclear. Here, we report that the induced global deletion of OTUB1 in adult mice (Otub1 iKO) elevated energy expenditure, reduced age-dependent body weight gain, facilitated blood glucose clearance and lowered basal plasma insulin levels. The respiratory exchange ratio was maintained, indicating an unaltered nutrient oxidation. In addition, Otub1 deletion in cells enhanced AKT activity, leading to a larger cell size, higher ATP levels and reduced AMPK phosphorylation. AKT is an integral part of insulin-mediated signaling and Otub1 iKO mice presented with increased AKT phosphorylation following acute insulin administration combined with insulin hypersensitivity. We conclude that OTUB1 is an important regulator of metabolic homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Cisteína Endopeptidases/genética , Deleção de Genes , Resistência à Insulina/genética , Insulina/administração & dosagem , Oxigenases de Função Mista/metabolismo , Adenilato Quinase/metabolismo , Animais , Glicemia , Peso Corporal , Tamanho Celular , Células Cultivadas , Cisteína Endopeptidases/metabolismo , Metabolismo Energético , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insulina/efeitos adversos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163046

RESUMO

Roux-en-Y gastric bypass (RYGB) surgery has been proven successful in weight loss and improvement of co-morbidities associated with obesity. Chronic complications such as malabsorption of micronutrients in up to 50% of patients underline the need for additional therapeutic approaches. We investigated systemic RYGB surgery effects in a liquid sucrose diet-induced rat obesity model. After consuming a diet supplemented with high liquid sucrose for eight weeks, rats underwent RYGB or control sham surgery. RYGB, sham pair-fed, and sham ad libitum-fed groups further continued on the diet after recovery. Notable alterations were revealed in microbiota composition, inflammatory markers, feces, liver, and plasma metabolites, as well as in brain neuronal activity post-surgery. Higher fecal 4-aminobutyrate (GABA) correlated with higher Bacteroidota and Enterococcus abundances in RYGB animals, pointing towards the altered enteric nervous system (ENS) and gut signaling. Favorable C-reactive protein (CRP), serine, glycine, and 3-hydroxybutyrate plasma profiles in RYGB rats were suggestive of reverted obesity risk. The impact of liquid sucrose diet and caloric restriction mainly manifested in fatty acid changes in the liver. Our multi-modal approach reveals complex systemic changes after RYGB surgery and points towards potential therapeutic targets in the gut-brain system to mimic the surgery mode of action.


Assuntos
Bactérias/classificação , Derivação Gástrica/efeitos adversos , Obesidade/cirurgia , RNA Ribossômico 16S/genética , Sacarose/administração & dosagem , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Proteína C-Reativa/metabolismo , Restrição Calórica , Estudos de Casos e Controles , DNA Bacteriano/metabolismo , DNA Ribossômico/genética , Modelos Animais de Doenças , Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Glucose/metabolismo , Masculino , Metabolômica , Obesidade/metabolismo , Obesidade/microbiologia , Filogenia , Ratos , Análise de Sequência de DNA
4.
Hum Brain Mapp ; 42(1): 24-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910516

RESUMO

Declining estrogen levels before, during, and after menopause can affect memory and risk for Alzheimer's disease. Undesirable side effects of hormone variations emphasize a role for hormone therapy (HT) where possible benefits include a delay in the onset of dementia-yet findings are inconsistent. Effects of HT may be mediated by estrogen receptors found throughout the brain. Effects may also depend on lifestyle factors, timing of use, and genetic risk. We studied the impact of self-reported HT use on brain volume in 562 elderly women (71-94 years) with mixed cognitive status while adjusting for aforementioned factors. Covariate-adjusted voxelwise linear regression analyses using a model with 16 predictors showed HT use as positively associated with regional brain volumes, regardless of cognitive status. Examinations of other factors related to menopause, oophorectomy and hysterectomy status independently yielded positive effects on brain volume when added to our model. One interaction term, HTxBMI, out of several examined, revealed significant negative association with overall brain volume, suggesting a greater reduction in brain volume than BMI alone. Our main findings relating HT to regional brain volume were as hypothesized, but some exploratory analyses were not in line with existing hypotheses. Studies suggest lower levels of estrogen resulting from oophorectomy and hysterectomy affect brain volume negatively, and the addition of HT modifies the relation between BMI and brain volume positively. Effects of HT may depend on the age range assessed, motivating studies with a wider age range as well as a randomized design.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Cognição/fisiologia , Terapia de Reposição de Estrogênios , Estrogênios/metabolismo , Estrogênios/farmacologia , Pós-Menopausa/fisiologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Histerectomia/efeitos adversos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Ovariectomia/efeitos adversos , Pós-Menopausa/metabolismo
5.
Cereb Cortex ; 29(12): 5217-5233, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31271414

RESUMO

Secondhand smoke exposure is a major public health risk that is especially harmful to the developing brain, but it is unclear if early exposure affects brain structure during middle age and older adulthood. Here we analyzed brain MRI data from the UK Biobank in a population-based sample of individuals (ages 44-80) who were exposed (n = 2510) or unexposed (n = 6079) to smoking around birth. We used robust statistical models, including quantile regressions, to test the effect of perinatal smoke exposure (PSE) on cortical surface area (SA), thickness, and subcortical volumes. We hypothesized that PSE would be associated with cortical disruption in primary sensory areas compared to unexposed (PSE-) adults. After adjusting for multiple comparisons, SA was significantly lower in the pericalcarine (PCAL), inferior parietal (IPL), and regions of the temporal and frontal cortex of PSE+ adults; these abnormalities were associated with increased risk for several diseases, including circulatory and endocrine conditions. Sensitivity analyses conducted in a hold-out group of healthy participants (exposed, n = 109, unexposed, n = 315) replicated the effect of PSE on SA in the PCAL and IPL. Collectively our results show a negative, long term effect of PSE on sensory cortices that may increase risk for disease later in life.


Assuntos
Córtex Cerebral/patologia , Poluição por Fumaça de Tabaco/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Reino Unido
6.
Int J Obes (Lond) ; 43(12): 2394-2406, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31270430

RESUMO

BACKGROUND/OBJECTIVES: The incidence of obesity and metabolic syndrome (MetS) has rapidly increased worldwide. Roux-en-Y gastric bypass (RYGB) achieves long-term weight loss and improves MetS-associated comorbidities. Using a mouse model with a humanized lipoprotein metabolism, we elucidated whether improvements in lipid and glucose metabolism after RYGB surgery are body weight loss-dependent or not. SUBJECTS/METHODS: Male ApoE*3Leiden.CETP (ApoE3L.CETP) mice fed Western type diet for 6 weeks underwent RYGB or Sham surgery. Sham groups were either fed ad libitum or were body weight-matched (BWm) to the RYGB mice to discriminate surgical effects from body weight loss-associated effects. Before and after surgery, plasma was collected to assess the metabolic profile, and glucose tolerance and insulin sensitivity were tested. Twenty days after surgery, mice were sacrificed, and liver was collected to assess metabolic, histological and global gene expression changes after surgery. RESULTS: RYGB induced a marked reduction in body weight, which was also achieved by severe food restriction in BWm mice, and total fat mass compared to Sham ad libitum mice (Sham AL). Total cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C) and ceramide were strongly reduced 20 days after surgery in RYGB compared to BWm mice. Glucose tolerance and insulin sensitivity improved 13 days after surgery similarly in RYGB and BWm mice. Liver histology confirmed lipid reduction in RYGB and BWm mice while the transcriptomics data indicated altered genes expression in lipid metabolism. CONCLUSIONS: RYGB surgery improves glucose metabolism and greatly ameliorates lipid metabolism in part in a body weight-dependent manner. Given that ApoE3L.CETP mice were extensively studied to describe the MetS, and given that RYGB improved ceramide after surgery, our data confirmed the usefulness of ApoE3L.CETP mice after RYGB in deciphering the metabolic improvements to treat the MetS.


Assuntos
Peso Corporal/fisiologia , Derivação Gástrica , Metabolismo dos Lipídeos/fisiologia , Redução de Peso/fisiologia , Animais , Apolipoproteínas E/genética , Glicemia/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Fígado/química , Fígado/fisiologia , Masculino , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Transgênicos
7.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R451-R460, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314542

RESUMO

Leptin receptor (LepR) signaling in neurons of the ventromedial nucleus of the hypothalamus (VMH), specifically those expressing steroidogenic factor-1 (SF1), have been proposed to play a key role in controlling energy balance. By crossing LepR-silenced (LepRloxTB) mice with those expressing SF1-Cre, we unsilenced native LepR specifically in the VMH and tested whether SF1 neurons in the VMH are critical mediators of leptin's effect on energy homeostasis. LepRloxTB × SF1-Cre [knockout (KO)/Tg+] mice were metabolically phenotyped and compared with littermate controls that either expressed or were deficient in LepRs. Leptin-induced phosphorylated STAT3 was present in the VMH of KO/Tg+ mice and absent in other hypothalamic nuclei. VMH leptin signaling did not ameliorate obesity resulting from LepR deficiency in chow-fed mice. There was no change in food intake or energy expenditure when comparing complete LepR-null mice with KO/Tg+ mice, nor did KO/Tg+ mice show improved glucose tolerance. The presence of functional LepRs in the VMH mildly enhanced sensitivity to the pancreatic hormone amylin. When maintained on a high-fat diet (HFD), there was no reduction in diet-induced obesity in KO/Tg+ mice, but KO/Tg+ mice had improved glucose tolerance after 7 wk on an HFD compared with LepR-null mice. We conclude that LepR signaling in the VMH alone is not sufficient to correct metabolic dysfunction observed in LepR-null mice.


Assuntos
Hipotálamo/citologia , Leptina/metabolismo , Neurônios/metabolismo , Obesidade , Receptores para Leptina/metabolismo , Animais , Composição Corporal , Encéfalo/metabolismo , Dieta Hiperlipídica , Diterpenos , Comportamento Alimentar , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Imuno-Histoquímica , Leptina/administração & dosagem , Leptina/sangue , Leptina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R856-R865, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133304

RESUMO

The pancreatic hormone amylin is released from beta cells following nutrient ingestion and contributes to the control of body weight and glucose homeostasis. Amylin reduces food intake by activating neurons in the area postrema (AP). Amylin was also shown to synergize with the adipokine leptin, with combination therapy producing greater weight loss and food intake reduction than either hormone alone. Although amylin and leptin were initially thought to interact downstream of the AP in the hypothalamus, recent findings show that the two hormones can act on the same AP neurons, suggesting a more direct relationship. The objective of this study was to determine whether amylin action depends on functional leptin signaling. We tested the ability of amylin to induce satiation and to activate its primary target neurons in the AP in two rodent models of LepR deficiency, the db/db mouse and the Zucker diabetic fatty (ZDF) rat. When compared with wild-type (WT) mice, db/db mice exhibited reduced amylin-induced satiation, reduced amylin-induced Fos in the AP, and a lower expression of calcitonin receptor (CTR) protein, the core component of all amylin receptors. ZDF rats also showed no reduction in food intake following amylin treatment; however, unlike the db/db mice, levels of amylin-induced Fos and CTR in the AP were no different than WT rats. Our results suggest that LepR expression is required for the full anorexic effect of amylin; however, the neuronal activation in the AP seems to depend on the type of LepR mutation.


Assuntos
Agonistas dos Receptores da Amilina/farmacologia , Depressores do Apetite/farmacologia , Área Postrema/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Leptina/metabolismo , Receptores para Leptina/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Animais , Área Postrema/metabolismo , Genótipo , Masculino , Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Zucker , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/efeitos dos fármacos , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/efeitos dos fármacos , Receptores para Leptina/genética , Transdução de Sinais/efeitos dos fármacos
9.
Eur J Neurosci ; 43(5): 653-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26750109

RESUMO

Amylin is a pancreatic ß-cell hormone that acts as a satiating signal to inhibit food intake by binding to amylin receptors (AMYs) and activating a specific neuronal population in the area postrema (AP). AMYs are heterodimers that include a calcitonin receptor (CTR) subunit [CTR isoform a or b (CTRa or CTRb)] and a member of the receptor activity-modifying proteins (RAMPs). Here, we used single-cell quantitative polymerase chain reaction to assess co-expression of AMY subunits in AP neurons from rats that were injected with amylin or vehicle. Because amylin interacts synergistically with the adipokine leptin to reduce body weight, we also assessed the co-expression of AMY and the leptin receptor isoform b (LepRb) in amylin-activated AP neurons. Single cells were collected from Wistar rats and from transgenic Fos-GFP rats that express green fluorescent protein (GFP) under the control of the Fos promoter. We found that the mRNAs of CTRa, RAMP1, RAMP2 and RAMP3 were all co-expressed in single AP neurons. Moreover, most of the CTRa+ cells co-expressed more than one of the RAMPs. Amylin down-regulated RAMP1 and RAMP3 but not CTR mRNAs in AMY+ neurons, suggesting a possible negative feedback mechanism of amylin at its own primary receptors. Interestingly, amylin up-regulated RAMP2 mRNA. We also found that a high percentage of single cells that co-expressed all components of a functional AMY expressed LepRb mRNA. Thus, single AP cells expressed both AMY and LepRb, which formed a population of first-order neurons that presumably can be directly activated by amylin and, at least in part, also by leptin.


Assuntos
Área Postrema/metabolismo , Neurônios/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores para Leptina/metabolismo , Animais , Área Postrema/citologia , Retroalimentação Fisiológica , Feminino , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Leptina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores para Leptina/genética
10.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1032-R1044, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27629888

RESUMO

Selectively bred diet-induced obese (DIO) rats become obese on a high-fat diet and are leptin resistant before becoming obese. Compared with diet-resistant (DR) neonates, DIO neonates have impaired leptin-dependent arcuate (ARC) neuropeptide Y/agouti-related peptide (NPY/AgRP) and α-melanocyte-stimulating hormone (α-MSH; from proopiomelanocortin (POMC) neurons) axon outgrowth to the paraventricular nucleus (PVN). Using phosphorylation of STAT3 (pSTAT3) as a surrogate, we show that reduced DIO ARC leptin signaling develops by postnatal day 7 (P7) and is reduced within POMC but not NPY/AgRP neurons. Since amylin increases leptin signaling in adult rats, we treated DIO neonates with amylin during postnatal hypothalamic development and assessed leptin signaling, leptin-dependent ARC-PVN pathway development, and metabolic changes. DIO neonates treated with amylin from P0-6 and from P0-16 increased ARC leptin signaling and both AgRP and α-MSH ARC-PVN pathway development, but increased only POMC neuron number. Despite ARC-PVN pathway correction, P0-16 amylin-induced reductions in body weight did not persist beyond treatment cessation. Since amylin enhances adult DIO ARC signaling via an IL-6-dependent mechanism, we assessed ARC-PVN pathway competency in IL-6 knockout mice and found that the AgRP, but not the α-MSH, ARC-PVN pathway was reduced. These results suggest that both leptin and amylin are important neurotrophic factors for the postnatal development of the ARC-PVN pathway. Amylin might act as a direct neurotrophic factor in DIO rats to enhance both the number of POMC neurons and their α-MSH ARC-PVN pathway development. This suggests important and selective roles for amylin during ARC hypothalamic development.


Assuntos
Hipotálamo/fisiopatologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/administração & dosagem , Leptina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/patologia , Núcleo Arqueado do Hipotálamo/fisiopatologia , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Gorduras na Dieta , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Masculino , Neurogênese/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Cuidado Pós-Natal , Ratos , Resultado do Tratamento
11.
Eur J Neurosci ; 40(7): 3055-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25040689

RESUMO

Amylin reduces meal size by activating noradrenergic neurons in the area postrema (AP). Neurons in the AP also mediate the eating-inhibitory effects of salmon calcitonin (sCT), a potent amylin agonist, but the phenotypes of the neurons mediating its effect are unknown. Here we investigated whether sCT activates similar neuronal populations to amylin, and if its anorectic properties also depend on AP function. Male rats underwent AP lesion (APX) or sham surgery. Meal patterns were analysed under ad libitum and post-deprivation conditions. The importance of the AP in mediating the anorectic action of sCT was examined in feeding experiments of dose-response effects of sCT in APX vs. sham rats. The effect of sCT to induce Fos expression was compared between surgery groups, and relative to amylin. The phenotype of Fos-expressing neurons in the brainstem was examined by testing for the co-expression of dopamine beta hydroxylase (DBH) or tryptophan hydroxylase (TPH). By measuring the apposition of vesicular glutamate transporter-2 (VGLUT2)-positive boutons, potential glutamatergic input to amylin- and sCT-activated AP neurons was compared. Similar to amylin, an intact AP was necessary for sCT to reduce eating. Further, co-expression between Fos activation and DBH after amylin or sCT did not differ markedly, while co-localization of Fos and TPH was minor. Approximately 95% of neurons expressing Fos and DBH after amylin or sCT treatment were closely apposed to VGLUT2-positive boutons. Our study suggests that the hindbrain pathways engaged by amylin and sCT share many similarities, including the mediation by AP neurons.


Assuntos
Área Postrema/fisiologia , Calcitonina/fisiologia , Ingestão de Alimentos/fisiologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/fisiologia , Neurônios/metabolismo , Animais , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Calcitonina/farmacologia , Dopamina beta-Hidroxilase/análise , Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Triptofano Hidroxilase/análise , Proteína Vesicular 2 de Transporte de Glutamato/análise
12.
Am J Physiol Regul Integr Comp Physiol ; 306(11): R861-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24694381

RESUMO

Contracting muscle releases interleukin-6 (IL-6) enabling the metabolic switch from carbohydrate to fat utilization. Similarly, metabolism is switched during transition from fed to fasting state. Herein, we examined a putative role for IL-6 in the metabolic adaptation to normal fasting. In lean C57BL/6J mice, 6 h of food withdrawal increased gene transcription levels of IL-6 in skeletal muscle but not in white adipose tissue. Concomitantly, circulating IL-6 and free fatty acid (FFA) levels were significantly increased, whereas respiratory quotient (RQ) was reduced in 6-h fasted mice. In white adipose tissue, phosphorylation of hormone-sensitive lipase (HSL) was increased on fasting, indicating increased lipolysis. Intriguingly, fasting-induced increase in circulating IL-6 levels and parallel rise in FFA concentration were absent in obese and glucose-intolerant mice. A causative role for IL-6 in the physiological adaptation to fasting was further supported by the fact that fasting-induced increase in circulating FFA levels was significantly blunted in lean IL-6 knockout (KO) and lean C57BL/6J mice treated with neutralizing IL-6 antibody. Consistently, phosphorylation of HSL was significantly reduced in adipose tissue of IL-6-depleted mice. Hence, our findings suggest a novel role for IL-6 in energy supply during early fasting.


Assuntos
Jejum/psicologia , Ácidos Graxos não Esterificados/metabolismo , Interleucina-6/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Metabolismo Energético/fisiologia , Interleucina-6/deficiência , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais
13.
Biophys Chem ; 308: 107201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452520

RESUMO

Amylin is released by pancreatic beta-cells in response to a meal and its major soluble mature form (37 amino acid-peptide) produces its biological effects by activating amylin receptors. Amylin is derived from larger propeptides that are processed within the synthesizing beta-cell. There are suggestions that a partially processed form, pro-amylin(1-48) is also secreted. We tested the hypothesis that pro-amylin(1-48) has biological activity and that human pro-amylin(1-48) may also form toxic pre-amyloid species. Amyloid formation, the ability to cross-seed and in vitro toxicity were similar between human pro-amylin(1-48) and amylin. Human pro-amylin(1-48) was active at amylin-responsive receptors, though its potency was reduced at rat, but not human amylin receptors. Pro-amylin(1-48) was able to promote anorexia by activating neurons of the area postrema, amylin's primary site of action, indicating that amylin can tolerate significant additions at the N-terminus without losing bioactivity. Our studies help to shed light on the possible roles of pro-amylin(1-48) which may be relevant for the development of future amylin-based drugs.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Ratos , Animais , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas
14.
J Physiol ; 591(22): 5611-21, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23897232

RESUMO

To maintain nutrient homeostasis the central nervous system integrates signals that promote or inhibit eating. The supply of vital amino acids is tuned by adjusting food intake according to its dietary protein content. We hypothesized that this effect is based on the sensing of individual amino acids as a signal to control food intake. Here, we show that food intake was most potently reduced by oral L-arginine (Arg), L-lysine (Lys) and L-glutamic acid (Glu) compared to all other 17 proteogenic amino acids in rats. These three amino acids induced neuronal activity in the area postrema and the nucleus of the solitary tract. Surgical lesion of the area postrema abolished the anorectic response to Arg and Glu, whereas vagal afferent lesion prevented the response to Lys. These three amino acids also provoked gastric distension by differentially altering gastric secretion and/or emptying. Importantly, these peripheral mechanical vagal stimuli were dissociated from the amino acids' effect on food intake. Thus, Arg, Lys and Glu had a selective impact on food processing and intake suggesting them as direct sensory input to assess dietary protein content and quality in vivo. Overall, this study reveals novel amino acid-specific mechanisms for the control of food intake and of gastrointestinal function.


Assuntos
Aminoácidos/metabolismo , Área Postrema/fisiologia , Ingestão de Alimentos/fisiologia , Neurônios Aferentes/fisiologia , Nervo Vago/fisiologia , Animais , Área Postrema/metabolismo , Trato Gastrointestinal/inervação , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiologia , Masculino , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Neurônios Aferentes/metabolismo , Ratos , Ratos Wistar , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiologia , Nervo Vago/metabolismo
15.
Neuroimage ; 66: 648-61, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23153970

RESUMO

Various neuroimaging measures are being evaluated for tracking Alzheimer's disease (AD) progression in therapeutic trials, including measures of structural brain change based on repeated scanning of patients with magnetic resonance imaging (MRI). Methods to compute brain change must be robust to scan quality. Biases may arise if any scans are thrown out, as this can lead to the true changes being overestimated or underestimated. Here we analyzed the full MRI dataset from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) from the first phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-1) and assessed several sources of bias that can arise when tracking brain changes with structural brain imaging methods, as part of a pipeline for tensor-based morphometry (TBM). In all healthy subjects who completed MRI scanning at screening, 6, 12, and 24months, brain atrophy was essentially linear with no detectable bias in longitudinal measures. In power analyses for clinical trials based on these change measures, only 39AD patients and 95 mild cognitive impairment (MCI) subjects were needed for a 24-month trial to detect a 25% reduction in the average rate of change using a two-sided test (α=0.05, power=80%). Further sample size reductions were achieved by stratifying the data into Apolipoprotein E (ApoE) ε4 carriers versus non-carriers. We show how selective data exclusion affects sample size estimates, motivating an objective comparison of different analysis techniques based on statistical power and robustness. TBM is an unbiased, robust, high-throughput imaging surrogate marker for large, multi-site neuroimaging studies and clinical trials of AD and MCI.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imagem de Tensor de Difusão/métodos , Idoso , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Atrofia , Ensaios Clínicos como Assunto , Interpretação Estatística de Dados , Imagem de Tensor de Difusão/instrumentação , Feminino , Humanos , Masculino , Estudos Prospectivos , Projetos de Pesquisa/normas
16.
Eur J Pharmacol ; 955: 175912, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454968

RESUMO

The glucose-dependent insulinotropic polypeptide (GIPR) and glucagon-like peptide (GLP-1R) receptor agonists are insulin secretagogues that have long been shown to improve glycemic control and dual agonists have demonstrated successful weight loss in the clinic. GIPR and GLP-1R populations are located in the dorsal vagal complex where receptor activity-modifying proteins (RAMPs) are also present. According to recent literature, RAMPs not only regulate the signaling of the calcitonin receptor, but also that of other class B G-protein coupled receptors, including members of the glucagon receptor family such as GLP-1R and GIPR. The aim of this study was to investigate whether the absence of RAMP1 and RAMP3 interferes with the action of GIPR and GLP-1R agonists on body weight maintenance and glucose control. To this end, WT and RAMP 1/3 KO mice were fed a 45% high fat diet for 22 weeks and were injected daily with GLP-1R agonist (2 nmol/kg/d; NN0113-2220), GIPR agonist (30 nmol/kg/d; NN0441-0329) or both for 3 weeks. While the mono-agonists exerted little to no body weight lowering and anorectic effects in WT or RAMP1/3 KO mice, but at the given doses, when both compounds were administered together, they synergistically reduced body weight, with a greater effect observed in KO mice. Finally, GLP-1R and GIP/GLP-1R agonist treatment led to improved glucose tolerance, but the absence of RAMPs resulted in an improvement of the HOMA-IR score. These data suggest that RAMPs may play a crucial role in modulating the pharmacological actions of GLP-1 and GIP receptors.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Receptores dos Hormônios Gastrointestinais , Animais , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas
17.
ArXiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36911283

RESUMO

There is great interest in developing radiological classifiers for diagnosis, staging, and predictive modeling in progressive diseases such as Parkinson's disease (PD), a neurodegenerative disease that is difficult to detect in its early stages. Here we leverage severity-based meta-data on the stages of disease to define a curriculum for training a deep convolutional neural network (CNN). Typically, deep learning networks are trained by randomly selecting samples in each mini-batch. By contrast, curriculum learning is a training strategy that aims to boost classifier performance by starting with examples that are easier to classify. Here we define a curriculum to progressively increase the difficulty of the training data corresponding to the Hoehn and Yahr (H&Y) staging system for PD (total N=1,012; 653 PD patients, 359 controls; age range: 20.0-84.9 years). Even with our multi-task setting using pre-trained CNNs and transfer learning, PD classification based on T1-weighted (T1-w) MRI was challenging (ROC AUC: 0.59-0.65), but curriculum training boosted performance (by 3.9%) compared to our baseline model. Future work with multimodal imaging may further boost performance.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38083460

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects over 10 million people worldwide. Brain atrophy and microstructural abnormalities tend to be more subtle in PD than in other age-related conditions such as Alzheimer's disease, so there is interest in how well machine learning methods can detect PD in radiological scans. Deep learning models based on convolutional neural networks (CNNs) can automatically distil diagnostically useful features from raw MRI scans, but most CNN-based deep learning models have only been tested on T1-weighted brain MRI. Here we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models for PD classification. Our evaluations used data from 3 separate cohorts - from Chang Gung University, the University of Pennsylvania, and the PPMI dataset. We trained CNNs on various combinations of these cohorts to find the best predictive model. Although tests on more diverse data are warranted, deep-learned models from dMRI show promise for PD classification.Clinical Relevance- This study supports the use of diffusion-weighted images as an alternative to anatomical images for AI-based detection of Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Imagem de Difusão por Ressonância Magnética
19.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205416

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects over 10 million people worldwide. Brain atrophy and microstructural abnormalities tend to be more subtle in PD than in other age-related conditions such as Alzheimer's disease, so there is interest in how well machine learning methods can detect PD in radiological scans. Deep learning models based on convolutional neural networks (CNNs) can automatically distil diagnostically useful features from raw MRI scans, but most CNN-based deep learning models have only been tested on T1-weighted brain MRI. Here we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models for PD classification. Our evaluations used data from 3 separate cohorts - from Chang Gung University, the University of Pennsylvania, and the PPMI dataset. We trained CNNs on various combinations of these cohorts to find the best predictive model. Although tests on more diverse data are warranted, deep-learned models from dMRI show promise for PD classification. Clinical Relevance: This study supports the use of diffusion-weighted images as an alternative to anatomical images for AI-based detection of Parkinson's disease.

20.
Am J Physiol Regul Integr Comp Physiol ; 302(3): R340-51, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22129618

RESUMO

Peripheral amylin inhibits eating via the area postrema (AP). Because amylin activates the extracellular-signal regulated kinase 1/2 (ERK) pathway in some tissues, and because ERK1/2 phosphorylation (pERK) leads to acute neuronal responses, we postulated that it may be involved in amylin's eating inhibitory effect. Amylin-induced ERK phosphorylation (pERK) was investigated by immunohistochemistry in brain sections containing the AP. pERK-positive AP neurons were double-stained for the calcitonin 1a/b receptor, which is part of the functional amylin-receptor. AP sections were also phenotyped using dopamine-ß-hydroxylase (DBH) as a marker of noradrenergic neurons. The effect of fourth ventricular administration of the ERK cascade blocker U0126 on amylin's eating inhibitory action was tested in feeding trials. The number of pERK-positive neurons in the AP was highest ∼10-15 min after amylin treatment; the effect appeared to be dose-dependent (5-20 µg/kg amylin). A portion of pERK-positive neurons in the AP carried the amylin-receptor and 22% of the pERK-positive neurons were noradrenergic. Pretreatment of rats with U0126 decreased the number of pERK-positive neurons in the AP after amylin injection. U0126 also attenuated the ability of amylin to reduce eating, at least when the animals had been fasted 24 h prior to the feeding trial. Overall, our results suggest that amylin directly stimulates pERK in AP neurons in a time- and dose-dependent manner. Part of the AP neurons displaying pERK were noradrenergic. At least under fasting conditions, pERK was shown to be a necessary part in the signaling cascade mediating amylin's anorectic effect.


Assuntos
Anorexia/fisiopatologia , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Área Postrema/efeitos dos fármacos , Área Postrema/patologia , Área Postrema/fisiopatologia , Butadienos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Quarto Ventrículo/efeitos dos fármacos , Quarto Ventrículo/patologia , Quarto Ventrículo/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Nitrilas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/efeitos dos fármacos , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA