Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141762

RESUMO

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Assuntos
Proteínas Ativadoras de GTPase , Mitocôndrias , Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Humanos , Sítios de Ligação , Calorimetria , Cromatografia em Gel , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
PLoS Comput Biol ; 20(6): e1012208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900844

RESUMO

The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear. To overcome this knowledge gap, we used a biochemical fractionation strategy to predict interactions by correlation profiling. To overcome the deficit of high-quality training data in non-model organisms, we complemented a supervised machine learning strategy, with an unsupervised approach, based on similarity network fusion. The resulting combined high confidence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery that include previously uncharacterized proteins that likely represent novel adaptations to oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secretory organelles and the inner membrane complex, predict additional novel components representing novel targets for detailed functional characterization. We present ToxoNet as a publicly available resource with the expectation that it will help drive future hypotheses within the research community.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Mapas de Interação de Proteínas/fisiologia , Biologia Computacional , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Bases de Dados de Proteínas , Aprendizado de Máquina , Análise por Conglomerados
3.
Genome Res ; 31(5): 834-851, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33906962

RESUMO

Toxoplasma gondii is a useful model for intracellular parasitism given its ease of culture in the laboratory and genomic resources. However, as for many other eukaryotes, the T. gondii genome contains hundreds of sequence gaps owing to repetitive and/or unclonable sequences that disrupt the assembly process. Here, we use the Oxford Nanopore Minion platform to generate near-complete de novo genome assemblies for multiple strains of T. gondii and its near relative, N. caninum We significantly improved T. gondii genome contiguity (average N50 of ∼6.6 Mb) and added ∼2 Mb of newly assembled sequence. For all of the T. gondii strains that we sequenced (RH, ME49, CTG, II×III progeny clones CL13, S27, S21, S26, and D3X1), the largest contig ranged in size between 11.9 and 12.1 Mb in size, which is larger than any previously reported T. gondii chromosome, and found to be due to a consistent fusion of Chromosomes VIIb and VIII. These data were validated by mapping existing T. gondii ME49 Hi-C data to our assembly, providing parallel lines of evidence that the T. gondii karyotype consists of 13, rather than 14, chromosomes. By using this technology, we also resolved hundreds of tandem repeats of varying lengths, including in well-known host-targeting effector loci like rhoptry protein 5 (ROP5) and ROP38 Finally, when we compared T. gondii with N. caninum, we found that although the 13-chromosome karyotype was conserved, extensive, previously unappreciated chromosome-scale rearrangements had occurred in T. gondii and N. caninum since their most recent common ancestry.


Assuntos
Toxoplasma , Variações do Número de Cópias de DNA , Genoma , Cariótipo , Análise de Sequência de DNA , Toxoplasma/genética
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723040

RESUMO

Host mitochondrial association (HMA) is a well-known phenomenon during Toxoplasma gondii infection of the host cell. The T. gondii locus mitochondrial association factor 1 (MAF1) is required for HMA and MAF1 encodes distinct paralogs of secreted dense granule effector proteins, some of which mediate the HMA phenotype (MAF1b paralogs drive HMA; MAF1a paralogs do not). To identify host proteins required for MAF1b-mediated HMA, we performed unbiased, label-free quantitative proteomics on host cells infected with type II parasites expressing MAF1b, MAF1a, and an HMA-incompetent MAF1b mutant. Across these samples, we identified ∼1,360 MAF1-interacting proteins, but only 13 that were significantly and uniquely enriched in MAF1b pull-downs. The gene products include multiple mitochondria-associated proteins, including those that traffic to the mitochondrial outer membrane. Based on follow-up endoribonuclease-prepared short interfering RNA (esiRNA) experiments targeting these candidate MAF1b-targeted host factors, we determined that the mitochondrial receptor protein TOM70 and mitochondria-specific chaperone HSPA9 were essential mediators of HMA. Additionally, the enrichment of TOM70 at the parasitophorous vacuole membrane interface suggests parasite-driven sequestration of TOM70 by the parasite. These results show that the interface between the T. gondii vacuole and the host mitochondria is characterized by interactions between a single parasite effector and multiple target host proteins, some of which are critical for the HMA phenotype itself. The elucidation of the functional members of this complex will permit us to explain the link between HMA and changes in the biology of the host cell.


Assuntos
Interações Hospedeiro-Parasita , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Proteínas de Transporte , Expressão Ectópica do Gene , Imunofluorescência , Interações Hospedeiro-Parasita/genética , Espectrometria de Massas , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Vacúolos/metabolismo , Virulência
5.
PLoS Pathog ; 16(6): e1008528, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574210

RESUMO

Toxoplasma gondii and Hammondia hammondi are closely-related coccidian intracellular parasites that differ in their ability to cause disease in animal and (likely) humans. The role of the host response in these phenotypic differences is not known and to address this we performed a transcriptomic analysis of a monocyte cell line (THP-1) infected with these two parasite species. The pathways altered by infection were shared between species ~95% the time, but the magnitude of the host response to H. hammondi was significantly higher compared to T. gondii. Accompanying this divergent host response was an equally divergent impact on the cell cycle of the host cell. In contrast to T. gondii, H. hammondi infection induces cell cycle arrest via pathways linked to DNA-damage responses and cellular senescence and robust secretion of multiple chemokines that are known to be a part of the senescence associated secretory phenotype (SASP). Remarkably, prior T. gondii infection or treatment with T. gondii-conditioned media suppressed responses to H. hammondi infection, and promoted the replication of H. hammondi in recipient cells. Suppression of inflammatory responses to H. hammondi was found to be mediated by the T. gondii effector IST, and this finding was consistent with reduced functionality of the H. hammondi IST ortholog compared to its T. gondii counterpart. Taken together our data suggest that T. gondii manipulation of the host cell is capable of suppressing previously unknown stress and/or DNA-damage induced responses that occur during infection with H. hammondi, and that one important impact of this T. gondii mediated suppression is to promote parasite replication.


Assuntos
Coccídios/fisiologia , Coccidiose/metabolismo , Interações Hospedeiro-Parasita , Toxoplasma/fisiologia , Toxoplasmose/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Especificidade da Espécie
6.
Infect Immun ; 88(4)2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32014892

RESUMO

Rodents are critical for the transmission of Toxoplasma gondii to the definitive feline host via predation, and this relationship has been extensively studied as a model for immune responses to parasites. Neospora caninum is a closely related coccidian parasite of ruminants and canines but is not naturally transmitted by rodents. We compared mouse innate immune responses to N. caninum and T. gondii and found marked differences in cytokine levels and parasite growth kinetics during the first 24 h postinfection (hpi). N. caninum-infected mice produced significantly higher levels of interleukin-12 (IL-12) and interferon gamma (IFN-γ) by as early as 4 hpi, but the level of IFN-γ was significantly lower or undetectable in T. gondii-infected mice during the first 24 hpi. "Immediate" IFN-γ and IL-12p40 production was not detected in MyD88-/- mice. However, unlike IL-12p40-/- and IFN-γ-/- mice, MyD88-/- mice survived N. caninum infections at the dose used in this study. Serial measures of parasite burden showed that MyD88-/- mice were more susceptible to N. caninum infections than wild-type (WT) mice, and control of parasite burdens correlated with a pulse of serum IFN-γ at 3 to 4 days postinfection in the absence of detectable IL-12. Immediate IFN-γ was partially dependent on the T. gondii mouse profilin receptor Toll-like receptor 11 (TLR11), but the ectopic expression of N. caninum profilin in T. gondii had no impact on early IFN-γ production or parasite proliferation. Our data indicate that T. gondii is capable of evading host detection during the first hours after infection, while N. caninum is not, and this is likely due to the early MyD88-dependent recognition of ligands other than profilin.


Assuntos
Coccidiose/imunologia , Fatores Imunológicos/metabolismo , Interferon gama/metabolismo , Neospora/imunologia , Doenças dos Roedores/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Interferon gama/deficiência , Interleucina-12/deficiência , Interleucina-12/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Neospora/crescimento & desenvolvimento , Análise de Sobrevida , Fatores de Tempo , Toxoplasma/crescimento & desenvolvimento
7.
Parasitology ; 147(13): 1433-1442, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32729455

RESUMO

Toxoplasma gondii rhoptry protein TgROP18 is a polymorphic virulence effector that targets immunity-related GTPases (IRGs) in rodents. Given that IRGs are uniquely diversified in rodents and not in other T. gondii intermediate hosts, the role of TgROP18 in manipulating non-rodent cells is unclear. Here we show that in human cells TgROP18I interacts with the interferon-gamma-inducible protein N-myc and STAT interactor (NMI) and that this is a property that is unique to the type I TgROP18 allele. Specifically, when expressed ectopically in mammalian cells only TgROP18I co-immunoprecipitates with NMI in IFN-γ-treated cells, while TgROP18II does not. In parasites expressing TgROP18I or TgROP18II, NMI only co-immunoprecipitates with TgROP18I and this is associated with allele-specific immunolocalization of NMI on the parasitophorous vacuolar membrane (PVM). We also found that TgROP18I reduces NMI association with IFN-γ-activated sequences (GAS) in the IRF1 gene promoter. Finally, we determined that polymorphisms in the C-terminal kinase domain of TgROP18I are required for allele-specific effects on NMI. Together, these data further define new host pathway targeted by TgROP18I and provide the first function driven by allelic differences in the highly polymorphic ROP18 locus.


Assuntos
Interferons/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Toxoplasma/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células THP-1
8.
Mol Microbiol ; 108(5): 519-535, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505111

RESUMO

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo , Animais , Feminino , Fibroblastos/citologia , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Loci Gênicos , Interações Hospedeiro-Parasita/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Toxoplasma/genética
9.
PLoS Biol ; 12(4): e1001845, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24781109

RESUMO

Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria.


Assuntos
Mitocôndrias/parasitologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Animais , Animais Geneticamente Modificados , Citocinas/metabolismo , Feminino , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/classificação , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Vacúolos/parasitologia
10.
Proc Natl Acad Sci U S A ; 110(18): 7446-51, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589877

RESUMO

Toxoplasma gondii is a ubiquitous protozoan parasite capable of infecting all warm-blooded animals, including humans. Its closest extant relative, Hammondia hammondi, has never been found to infect humans and, in contrast to T. gondii, is highly attenuated in mice. To better understand the genetic bases for these phenotypic differences, we sequenced the genome of a H. hammondi isolate (HhCatGer041) and found the genomic synteny between H. hammondi and T. gondii to be >95%. We used this genome to determine the H. hammondi primary sequence of two major T. gondii mouse virulence genes, TgROP5 and TgROP18. When we expressed these genes in T. gondii, we found that H. hammondi orthologs of TgROP5 and TgROP18 were functional. Similar to T. gondii, the HhROP5 locus is expanded, and two distinct HhROP5 paralogs increased the virulence of a T. gondii TgROP5 knockout strain. We also identified a 107 base pair promoter region, absent only in type III TgROP18, which is necessary for TgROP18 expression. This result indicates that the ROP18 promoter was active in the most recent common ancestor of these two species and that it was subsequently inactivated in progenitors of the type III lineage. Overall, these data suggest that the virulence differences between these species are not solely due to the functionality of these key virulence factors. This study provides evidence that other mechanisms, such as differences in gene expression or the lack of currently uncharacterized virulence factors, may underlie the phenotypic differences between these species.


Assuntos
Genes de Protozoários/genética , Sarcocystidae/genética , Sarcocystidae/patogenicidade , Homologia de Sequência do Ácido Nucleico , Toxoplasma/genética , Alelos , Animais , Pareamento de Bases/genética , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica , Loci Gênicos/genética , Humanos , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Sarcocystidae/crescimento & desenvolvimento , Sintenia/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Virulência/genética
11.
PLoS Pathog ; 9(6): e1003449, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818852

RESUMO

CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood. Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Animais , Antígenos de Protozoários/genética , Epitopos de Linfócito T/genética , Células L , Camundongos , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Toxoplasma/genética
12.
Am J Obstet Gynecol ; 212(1): 71.e1-71.e8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25108145

RESUMO

OBJECTIVE: Primary human trophoblasts were previously shown to be resistant to viral infection, and able to confer this resistance to nontrophoblast cells. Can trophoblasts protect nontrophoblastic cells from infection by viruses or other intracellular pathogens that are implicated in perinatal infection? STUDY DESIGN: Isolated primary term human trophoblasts were cultured for 48-72 hours. Diverse nonplacental human cell lines (U2OS, human foreskin fibroblast, TZM-bl, MeWo, and Caco-2) were preexposed to either trophoblast conditioned medium, nonconditioned medium, or miR-517-3p for 24 hours. Cells were infected with several viral and nonviral pathogens known to be associated with perinatal infections. Cellular infection was defined and quantified by plaque assays, luciferase assays, microscopy, and/or colonization assays. Differences in infection were assessed by Student t test or analysis of variance with Bonferroni correction. RESULTS: Infection by rubella and other togaviruses, human immunodeficiency virus-1, and varicella zoster was attenuated in cells preexposed to trophoblast-conditioned medium (P < .05), and a partial effect by the chromosome 19 microRNA miR-517-3p on specific pathogens. The conditioned medium had no effect on infection by Toxoplasma gondii or Listeria monocytogenes. CONCLUSION: Our findings indicate that medium conditioned by primary human trophoblasts attenuates viral infection in nontrophoblastic cells. Our data point to a trophoblast-specific antiviral effect that may be exploited therapeutically.


Assuntos
Resistência à Doença , Doenças Fetais/virologia , Trofoblastos/fisiologia , Viroses/imunologia , Células Cultivadas , Meios de Cultivo Condicionados , Humanos , Recém-Nascido
13.
Eukaryot Cell ; 13(12): 1507-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280815

RESUMO

Toxoplasma gondii and its nearest extant relative, Hammondia hammondi, are phenotypically distinct despite their remarkable similarity in gene content, synteny, and functionality. To begin to identify genetic differences that might drive distinct infection phenotypes of T. gondii and H. hammondi, in the present study we (i) determined whether two known host-interacting proteins, dense granule protein 15 (GRA15) and rhoptry protein 16 (ROP16), were functionally conserved in H. hammondi and (ii) performed the first comparative transcriptional analysis of H. hammondi and T. gondii sporulated oocysts. We found that GRA15 and ROP16 from H. hammondi (HhGRA15 and HhROP16) modulate the host NF-κB and STAT6 pathways, respectively, when expressed heterologously in T. gondii. We also found the transcriptomes of H. hammondi and T. gondii to be highly distinct. Consistent with the spontaneous conversion of H. hammondi tachyzoites into bradyzoites both in vitro and in vivo, H. hammondi high-abundance transcripts are enriched for genes that are of greater abundance in T. gondii bradyzoites. We also identified genes that are of high transcript abundance in H. hammondi but are poorly expressed in multiple T. gondii life stages, suggesting that these genes are uniquely expressed in H. hammondi. Taken together, these data confirm the functional conservation of known T. gondii virulence effectors in H. hammondi and point to transcriptional differences as a potential source of the phenotypic differences between these species.


Assuntos
Toxoplasma/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Genes de Protozoários , Interações Hospedeiro-Parasita , Humanos , Dados de Sequência Molecular , NF-kappa B/metabolismo , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT6/metabolismo , Transcriptoma
14.
Infect Immun ; 82(10): 4047-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024369

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that can cause severe neurological disease in infected humans. CD40 is a receptor on macrophages that plays a critical role in controlling T. gondii infection. We examined the regulation of CD40 on the surface of T. gondii-infected bone marrow-derived macrophages (BMdMs). T. gondii induced CD40 expression both at the transcript level and on the cell surface, and interestingly, the effect was parasite strain specific: CD40 levels were dramatically increased in type II T. gondii-infected BMdMs compared to type I- or type III-infected cells. Type II induction of CD40 was specific to cells harboring intracellular parasites and detectable as early as 6 h postinfection (hpi) at the transcript level. CD40 protein expression peaked at 18 hpi. Using forward genetics with progeny from a type II × type III cross, we found that CD40 induction mapped to a region of chromosome X that included the gene encoding the dense granule protein 15 (GRA15). Using type I parasites stably expressing the type II allele of GRA15 (GRA15II), we found that type I GRA15II parasites induced the expression of CD40 on infected cells in an NF-κB-dependent manner. In addition, stable expression of hemagglutinin-tagged GRA15II in THP-1 cells resulted in CD40 upregulation in the absence of infection. Since CD40 signaling contributes to interleukin-12 (IL-12) production, we examined IL-12 from infected macrophages and found that CD40L engagement of CD40 amplified the IL-12 response in type II-infected cells. These data indicate that GRA15II induction of CD40 promotes parasite immunity through the production of IL-12.


Assuntos
Antígenos CD40/biossíntese , Antígenos CD40/imunologia , Interleucina-12/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Animais , Antígenos de Protozoários/imunologia , Células Cultivadas , Humanos
15.
J Membr Biol ; 247(5): 395-408, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24652510

RESUMO

Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.


Assuntos
Membrana Celular/metabolismo , Peptídeos/metabolismo , Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Toxoplasma/química
16.
Proc Natl Acad Sci U S A ; 108(23): 9625-30, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21436047

RESUMO

Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa, has the unusual ability to infect virtually any warm-blooded animal. It is an extraordinarily successful parasite, infecting an estimated 30% of humans worldwide. The outcome of Toxoplasma infection is highly dependent on allelic differences in the large number of effectors that the parasite secretes into the host cell. Here, we show that the largest determinant of the virulence difference between two of the most common strains of Toxoplasma is the ROP5 locus. This is an unusual segment of the Toxoplasma genome consisting of a family of 4-10 tandem, highly divergent genes encoding pseudokinases that are injected directly into host cells. Given their hypothesized catalytic inactivity, it is striking that deletion of the ROP5 cluster in a highly virulent strain caused a complete loss of virulence, showing that ROP5 proteins are, in fact, indispensable for Toxoplasma to cause disease in mice. We find that copy number at this locus varies among the three major Toxoplasma lineages and that extensive polymorphism is clustered into hotspots within the ROP5 pseudokinase domain. We propose that the ROP5 locus represents an unusual evolutionary strategy for sampling of sequence space in which the gene encoding an important enzyme has been (i) catalytically inactivated, (ii) expanded in number, and (iii) subject to strong positive selection. Such a strategy likely contributes to Toxoplasma's successful adaptation to a wide host range and has resulted in dramatic differences in virulence.


Assuntos
Família Multigênica/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Toxoplasma/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Feminino , Teste de Complementação Genética , Loci Gênicos/genética , Variação Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutação , Filogenia , Isoformas de Proteínas/genética , Proteínas de Protozoários/classificação , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Toxoplasma/classificação , Toxoplasma/patogenicidade , Toxoplasmose Animal/parasitologia , Virulência/genética
17.
mSphere ; 9(6): e0074823, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38771057

RESUMO

The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance of understanding these mechanisms and challenges in replicating trophoblast-pathogen interactions using in vitro models, we tested an existing stem-cell-derived model of trophoblast development for its relevance to infection with Toxoplasma gondii. We grew human trophoblast stem cells (TSCT) under conditions leading to either syncytiotrophoblast (TSSYN) or cytotrophoblast (TSCYT) and infected them with T. gondii. We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TSSYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by transmission electron microscopy and scanning electron microscopy (SEM), a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TSSYNs were highly refractory to parasite adhesion and replication, while TSCYTs were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TSSC-derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes. We demonstrate that TSSYNs are highly resistant to L. monocytogenes, while TSCYTs are not. Like T. gondii, TSSYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell-derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.IMPORTANCECongenital toxoplasmosis can cause a devastating consequence to the fetus. To reach the fetus's tissues, Toxoplasma gondii must cross the placenta barrier. However, how this parasite crosses the placenta and the precise molecular mechanisms of placental resistance to this parasite are still unknown. In this study, we aimed to characterize a new cellular model of human trophoblast stem cells to determine their resistance, susceptibility, and response to T. gondii. Syncytiotrophoblast derived from trophoblast stem cells recapitulate the resistance profile similarly to placenta cells. We also showed that these cells are highly resistant to Listeria monocytogenes, at the level of bacterial adhesion. Our results suggest that resisting pathogen adhesion/attachment may be a generalized mechanism of syncytiotrophoblast resistance, and trophoblast stem cells represent a promising model to investigate cell-intrinsic mechanisms of resistance to pathogen adhesion and replication.


Assuntos
Listeria monocytogenes , Toxoplasma , Trofoblastos , Trofoblastos/microbiologia , Trofoblastos/parasitologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/fisiologia , Toxoplasma/ultraestrutura , Humanos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Feminino , Gravidez , Adesão Celular , Placenta/microbiologia , Placenta/parasitologia , Toxoplasmose/parasitologia , Células-Tronco
18.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986837

RESUMO

The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance to understand these mechanisms and challenges in replicating trophoblast- pathogen interactions using in vitro models, we tested an existing stem-cell derived model of trophoblast development for its relevance to infection with Toxoplasma gondii . We grew human trophoblast stem cells (TS CT ) under conditions leading to either syncytiotrophoblast (TS SYN ) or cytotrophoblast (TS CYT ) and infected them with T. gondii . We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TS SYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by TEM and SEM, a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TS SYNs were highly refractory to parasite adhesion and replication, while TS CYT were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TS SC -derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes . We demonstrate that TS SYNs are highly resistant to L. monocytogenes , while TS CYTs are not. Like T. gondii , TS SYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.

19.
Nat Commun ; 14(1): 6078, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770433

RESUMO

Identification of regulators of Toxoplasma gondii bradyzoite development and cyst formation is the most direct way to address the importance of parasite development in long-term persistence and reactivation of this parasite. Here we show that a T. gondii gene (named Regulator of Cystogenesis 1; ROCY1) is sufficient for T. gondii bradyzoite formation in vitro and in vivo. ROCY1 encodes an RNA binding protein that has a preference for 3' regulatory regions of hundreds of T. gondii transcripts, and its RNA-binding domains are required to mediate bradyzoite development. Female mice infected with ΔROCY1 parasites have reduced (>90%) cyst burden. While viable parasites can be cultivated from brain tissue for up to 6 months post-infection, chronic brain-resident ΔROCY1 parasites have reduced oral infectivity compared to wild type. Despite clear defects in bradyzoite formation and oral infectivity, ΔROCY1 parasites were able to reactivate with similar timing and magnitude as wild type parasites for up to 5 months post-infection. Therefore while ROCY1 is a critical regulator of the bradyzoite developmental pathway, it is not required for parasite reactivation, raising new questions about the persisting life stage responsible for causing recrudescent disease.


Assuntos
Toxoplasma , Feminino , Animais , Camundongos , Toxoplasma/metabolismo , Redes Reguladoras de Genes , Recidiva Local de Neoplasia , Encéfalo/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
20.
Antimicrob Agents Chemother ; 56(11): 5581-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22908155

RESUMO

Toxoplasma gondii is a globally ubiquitous pathogen that can cause severe disease in immunocompromised humans and the developing fetus. Given the proven role of Toxoplasma-secreted kinases in the interaction of Toxoplasma with its host cell, identification of novel kinase inhibitors could precipitate the development of new anti-Toxoplasma drugs and define new pathways important for parasite survival. We selected a small (n = 527) but diverse set of putative kinase inhibitors and screened them for effects on the growth of Toxoplasma in vitro. We identified and validated 14 noncytotoxic compounds, all of which had 50% effective concentrations in the nanomolar to micromolar range. We further characterized eight of these compounds, four inhibitors and four enhancers, by determining their effects on parasite motility, invasion, and the likely cellular target (parasite or host cell). Only two compounds had an effect on parasite motility and invasion. All the inhibitors appeared to target the parasite, and interestingly, two of the enhancers appeared to rather target the host cell, suggesting modulation of host cell pathways beneficial for parasite growth. For the four inhibitors, we also tested their efficacy in a mouse model, where one compound proved potent. Overall, these 14 compounds represent a new and diverse set of small molecules that are likely targeting distinct parasite and host cell pathways. Future work will aim to characterize their molecular targets in both the host and parasite.


Assuntos
Inibidores de Proteínas Quinases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose Animal/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Genes Reporter , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Parasita , Humanos , Concentração Inibidora 50 , Luciferases , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Taxa de Sobrevida , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia , Toxoplasmose Animal/mortalidade , Toxoplasmose Animal/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA