Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 369-378, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29325723

RESUMO

The CYP74C subfamily of fatty acid hydroperoxide transforming enzymes includes hydroperoxide lyases (HPLs) and allene oxide synthases (AOSs). This work reports a new facet of the putative CYP74C HPLs. Initially, we found that the recombinant CYP74C13_MT (Medicago truncatula) behaved predominantly as the epoxyalcohol synthase (EAS) towards the 9(S)-hydroperoxide of linoleic acid. At the same time, the CYP74C13_MT mostly possessed the HPL activity towards the 13(S)-hydroperoxides of linoleic and α-linolenic acids. To verify whether this dualistic behaviour of CYP74C13_MT is occasional or typical, we also examined five similar putative HPLs (CYP74C). These were CYP74C4_ST (Solanum tuberosum), CYP74C2 (Cucumis melo), CYP74C1_CS and CYP74C31 (both of Cucumis sativus), and CYP74C13_GM (Glycine max). All tested enzymes behaved predominantly as EAS toward 9-hydroperoxide of linoleic acid. Oxiranyl carbinols such as (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acids were the major EAS products. Besides, the CYP74C31 possessed an additional minor 9-AOS activity. The mutant forms of CYP74C13_MT, CYP74C1_CS, and CYP74C31 with substitutions at the catalytically essential domains, namely the "hydroperoxide-binding domain" (I-helix), or the SRS-1 domain near the N-terminus, showed strong AOS activity. These HPLs to AOSs conversions were observed for the first time. Until now a large part of CYP74C enzymes has been considered as 9/13-HPLs. Notwithstanding, these results show that all studied putative CYP74C HPLs are in fact the versatile HPL/EASs that can be effortlessly mutated into specific AOSs.


Assuntos
Aldeído Liases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/metabolismo , Mutagênese Sítio-Dirigida , Plantas/enzimologia , Aldeído Liases/química , Sequência de Aminoácidos , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Ácidos Linoleicos/química , Ácidos Linoleicos/metabolismo , Ácidos Linolênicos/química , Ácidos Linolênicos/metabolismo , Peróxidos Lipídicos/química , Peróxidos Lipídicos/metabolismo , Proteínas Mutantes/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(10): 1316-1322, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305246

RESUMO

Hydroperoxide lyases (HPLs) of the CYP74 family (P450 superfamily) are widely distributed enzymes in higher plants and are responsible for the stress-initiated accumulation of short-chain aldehydes. Fatty acid hydroperoxides serve as substrates for HPLs; however, details of the HPL-promoted conversion are still incompletely understood. In the present work, we report first time the micropreparative isolation and the NMR structural studies of fatty acid hemiacetal (TMS/TMS), the short-lived HPL product. With this aim, linoleic acid 9(S)­hydroperoxide (9(S)­HPOD) was incubated with recombinant melon hydroperoxide lyase (CmHPL, CYP74C2) in a biphasic system of water/hexane for 60 s at 0 °C, pH 4.0. The hexane layer was immediately decanted and vortexed with a trimethylsilylating mixture. Analysis by GC-MS revealed a major product, i.e. the bis-TMS derivative of a hemiacetal which was conclusively identified as 9­hydroxy­9­[(1'E,3'Z)­nonadienyloxy]­nonanoic acid by NMR-spectroscopy. Further support for the hemiacetal structure was provided by detailed NMR-spectroscopic analysis of the bis-TMS hemiacetal generated from [13C18]9(S)­HPOD in the presence of CmHPL. The results obtained provide incontrovertible evidence that the true products of the HPL group of enzymes are hemiacetals, and that the short-chain aldehydes are produced by their rapid secondary chain breakdown. Therefore, we suggest replacing the name "hydroperoxide lyase", which does not reflect the factual isomerase (intramolecular oxidoreductase) activity, with "hemiacetal synthase" (HAS).


Assuntos
Aldeído Liases/metabolismo , Cucurbitaceae/enzimologia , Peróxidos Lipídicos/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Linoleicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Proteínas de Plantas/metabolismo , Especificidade por Substrato
3.
Biochim Biophys Acta ; 1761(12): 1419-28, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17049304

RESUMO

The conversion of linoleic acid 9-hydroperoxide (9-HPOD) by recombinant melon (Cucumis melo L.) hydroperoxide lyase (HPL, CYP74C subfamily) was studied. Short (5 s-1 min) incubations at 0 degrees C followed by rapid extraction and trimethylsilylation made it possible to trap a new unstable (t(1/2) <30 s) product, i.e. the hemiacetal (1'E,3'Z)-9-hydroxy-9-(1',3'-nonadienyloxy)-nonanoic acid. Identification was performed by GC-MS analysis and substantiated by the formation of trimethylsilyl 9-trimethylsilyloxy-9-nonyloxy-nonanoate upon catalytic hydrogenation and by (2)H-labelling experiments. Both (18)O atoms of [(18)O(2)-hydroperoxy]9-HPOD were incorporated into the hemiacetal. Along with the hemiacetal, three chain-cleavage products, i.e. the enol (1E,3Z)-nonadienol and the hydrates of 3(Z)-nonenal and 9-oxononanoic acid, were trapped as their trimethylsilyl derivatives. The kinetics of (18)O incorporation from [(18)O(2)]9-HPOD provided strong evidence that the cleavage products originated in the hemiacetal. Linolenic and linoleic acid 13-hydroperoxides served as substrates for recombinant HPLs of melon, alfalfa (Medicago sativa) and guava (Psidium guajava), and in each case hemiacetals and enols were detectable by the trapping technique. The data obtained demonstrated that CYP74C and CYP74B HPLs act as isomerases performing a homolytic rearrangement of fatty acid hydroperoxides into short-lived hemiacetals which upon decomposition produce 3(Z)-nonenal, 3(Z)-hexenal and other short chain aldehydes.


Assuntos
Aldeído Liases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peróxidos Lipídicos/metabolismo , Acetais/química , Acetais/metabolismo , Aldeído Liases/genética , Cucumis melo/enzimologia , Cucumis melo/genética , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Isomerismo , Ácidos Linoleicos/química , Ácidos Linoleicos/metabolismo , Peróxidos Lipídicos/química , Medicago sativa/enzimologia , Medicago sativa/genética , Estrutura Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Psidium/enzimologia , Psidium/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Biochim Biophys Acta ; 1623(2-3): 109-19, 2003 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-14572908

RESUMO

The formation of 4-hydroxy-5-methyl-3(2H)-furanone (HMF, norfuraneol) by spinach ribosephosphate isomerase was reinvestigated. Incubation experiments using D-ribose-5-phosphate and D-ribulose-5-phosphate clearly revealed a spontaneous nonenzymatic formation of the hydroxy-furanone from the ketose-phosphate under physiological conditions at 35 degrees C and pH 7.5, whereupon up to 1.3% of D-ribulose-5-phosphate was transformed to HMF within 15 h. 4,5-Dihydroxy-2,3-pentanedione was deduced as ultimate precursor of HMF, since addition of o-phenylenediamine to the incubation mixture led to lower amounts of HMF and to the formation of 3-(1,2-dihydroxyethyl)-2-methylquinoxaline, which was identified by means of high pressure liquid chromatography with diode array detection (HPLC-DAD), HPLC-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) and NMR spectroscopy. Additionally, the spontaneous formation of 4,5-dihydroxy-2,3-pentanedione was demontrated by its conversion to the respective alditol acetate using either NaBH(4) or NaBD(4) for the reduction. Comparative gas chromatography-mass spectrometry (GC-MS) analysis revealed the incorporation of two deuterium atoms and confirmed the dicarbonyl structure. Application of 1-13C-D-ribulose-5-phosphate as well as 5-13C-D-ribulose-5-phosphate and analysis of the derived quinoxaline derivatives by HPLC-ESI-MS/MS demonstrated the formation of the methyl-group at C-5 of the carbohydrate phosphate in consequence of a nonenzymatic phosphate elimination. Application of o-phenylenediamine into ripe tomatoes led to the detection of 3-(1,2-dihydroxyethyl)-2-methylquinoxaline by means of HPLC-MS/MS analysis implying the genuine occurrence of 4,5-dihydroxy-2,3-pentanedione in this fruit.


Assuntos
Furanos/metabolismo , Solanum lycopersicum/metabolismo , Cromatografia Líquida de Alta Pressão , Furanos/química , Furanos/isolamento & purificação , Estrutura Molecular , Pentosefosfatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
5.
Carbohydr Res ; 337(13): 1185-91, 2002 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-12110193

RESUMO

The selective chemical formation of 4-hydroxy-2,5-dimethyl-3[2H]-furanone (HDF) from D-fructose 1,6-diphosphate in the presence of reduced nicotinamide-adenine-dinucleotides (NAD(P)H) was investigated by means of HPLC-DAD and HPLC-UV-MS/MS. The temperature optimum for HDF formation was 30 degrees C, whereas the pH value (pH 3-10) and chemical nature of the buffer had no significant influence. A linear correlation of reaction time and D-fructose 1,6-diphosphate concentration with the obtained HDF yield was observed. Proteins appeared to have a stabilizing effect. The NAD(P)H were mandatory, even in the presence of protein, implying a non-enzymatic hydride-transfer to an unknown intermediate which finally leads to the selective formation of HDF. The hydride-transfer was confirmed by the application of selectively pro-4R or pro-4S deuterium labeled NADH resulting in each case in the formation of HDF exhibiting a deuterium labeling of approx 30% and employment of [4R,S-(2)H(2)]-NADH led to a deuterium labeling of approx 66%. The incubation of [1-(13)C]-D-fructose 1,6-diphosphate with [4R,S-(2)H(2)]-NADH revealed that the hydride is transferred to C-5 or C-6 of the D-fructose 1,6-diphosphate skeleton. Thus, a chemical HDF formation from D-fructose 1,6-diphosphate under physiological reaction conditions was shown and for the first time to our knowledge a non-enzymatic hydride-transfer from NADH to a carbohydrate structure was demonstrated.


Assuntos
Frutosedifosfatos/química , Furanos/química , Furanos/síntese química , Deutério , Concentração de Íons de Hidrogênio , Estrutura Molecular , NADP/química , Temperatura
6.
J Agric Food Chem ; 51(16): 4753-6, 2003 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-14705908

RESUMO

The formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) by Zygosaccharomyces rouxii was studied in yeast-peptone-dextrose medium containing d-fructose 1,6-diphosphate under various culture conditions. Cell growth and HDMF production was heavily dependent on medium pH and sodium chloride concentration. Higher pH values of the nutrient medium had a positive effect on HDMF formation but retarded cell growth resulting in an optimal pH value of 5.1 with regard to the yield of HDMF. Salt stress stimulated HDMF formation by Z. rouxii as increasing sodium chloride concentration led to higher amounts of HDMF. The HDMF concentration in the culture supernatant and HDMF formation per yeast cell peaked at 20% sodium chloride in the nutrient medium. The nonutilizable carbohydrate d-xylose displayed a weak effect on HDMF formation, and the addition of glycerol to salt-stressed cells had no effect on the production of HDMF.


Assuntos
Meios de Cultura , Furanos/metabolismo , Zygosaccharomyces/metabolismo , Frutosedifosfatos , Glicerol/farmacologia , Concentração de Íons de Hidrogênio , Cloreto de Sódio/análise , Xilose/farmacologia , Zygosaccharomyces/crescimento & desenvolvimento
7.
J Agric Food Chem ; 51(5): 1410-4, 2003 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-12590490

RESUMO

Formation of the flavor compound and precursor 4-hydroxy-5-methyl-3[2H]-furanone (HMF, norfuraneol) was demonstrated in cytosolic protein extracts obtained from Zygosaccharomyces rouxii after incubation with a number of carbohydrate phosphates. 4-Hydroxy-5-methyl-3[2H]-furanone was produced from d-fructose-1,6-diphosphate, d-fructose-6-phosphate, d-glucose-6-phosphate, 6-phosphogluconate, d-ribose-5-phosphate, and d-ribulose-1,5-diphosphate. Enzyme assays revealed d-fructose-1,6-diphosphatase, phosphohexose isomerase, d-glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase activity in the cytosolic extracts. Model studies showed the spontaneous formation of HMF from d-ribulose-5-phosphate. It is assumed that d-ribulose-5-phosphate is generated in cytosolic extracts by the action of the investigated enzymes from the carbohydrate phosphates and is then chemically transformed to HMF. The hypothesis was proven by the production of HMF in solutions containing commercially available enzymes and [6-(13)C]-d-glucose-6-phosphate.


Assuntos
Citosol/metabolismo , Furanos/sangue , Zygosaccharomyces/ultraestrutura , Citosol/enzimologia , Frutose-Bifosfatase/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Ribulosefosfatos/metabolismo , Fosfatos Açúcares/metabolismo
8.
J Biotechnol ; 184: 17-26, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24833423

RESUMO

Directed evolution via iterative cycles of random and targeted mutagenesis was applied to the P450 domain of the subterminal fatty acid hydroxylase CYP102A1 of Bacillus megaterium to shift its regioselectivity towards the terminal position of palmitic acid. A powerful and versatile high throughput assay based on LC-MS allowed the simultaneous detection of primary and secondary oxidation products, which was instrumental for identifying variants with a strong preference for the terminal oxidation of palmitic acid. The best variants identified acquired up to 11 amino acid alterations. Substitutions at F87, I263, and A328, relatively close to the bound substrate based on available crystallographic information contributed significantly to the altered regioselectivity. However, non-obvious residues much more distant from the bound substrate showed surprising strong contributions to the increased selectivity for the terminal position of palmitic acid.


Assuntos
Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular Direcionada , Mutagênese/genética , NADPH-Ferri-Hemoproteína Redutase/genética , Ácido Palmítico/metabolismo , Substituição de Aminoácidos/genética , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia Genética , Ensaios de Triagem em Larga Escala , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Ácido Palmítico/química
9.
J Biotechnol ; 163(3): 339-45, 2013 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-23183385

RESUMO

The performance of a 13-hydroperoxide lyase from guava, an enzyme of the CYP74 family, which is of interest for the industrial production of saturated and unsaturated C6-aldehydes and their derivatives, was improved by directed evolution. Four rounds of gene shuffling and random mutagenesis improved the functional expression in E. coli by offering a 15-fold higher product yield factor. The increased product yield factor relates to an improved total turnover number of the variant enzyme, which also showed higher solubility and increased heme content. Thermal stability was also dramatically improved even though there was no direct selection pressure applied for evolving this trait. A structure based sequence alignment with the recently solved allene oxide synthase of Arabidopsis thaliana showed that most amino acid alterations occurred on the surface of the protein, distant of the active site and often outside of secondary structures. These results demonstrate the power of directed evolution for improving a complex trait such as the total turnover number of a cytochrome P450, a critical parameter for process performance that is difficult to predict even with good structural information at hand.


Assuntos
Aldeído Liases/genética , Aldeído Liases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aldeído Liases/biossíntese , Aldeído Liases/química , Sequência de Aminoácidos , Domínio Catalítico , Células Cultivadas , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/química , Evolução Molecular Direcionada/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Heme/metabolismo , Dados de Sequência Molecular , Mutagênese , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Psidium/enzimologia , Psidium/genética , Alinhamento de Sequência/métodos , Temperatura
10.
Appl Environ Microbiol ; 69(7): 3911-8, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12839760

RESUMO

The formation of the important flavor compound 4-hydroxy-2,5-dimethyl-3[2H]-furanone (HDMF; Furaneol) from D-fructose-1,6-bisphosphate by the yeast Zygosaccharomyces rouxii was studied with regard to the identification of intermediates present in the culture medium. Addition of o-phenylenediamine, a trapping reagent for alpha-dicarbonyls, to the culture medium and subsequent analysis by high-pressure liquid chromatography with diode array detection revealed the formation of three quinoxaline derivatives derived from D-fructose-1,6-bisphosphate under the applied growth conditions (30 degrees C; pH 4 to 5). Isolation and characterization of these compounds by tandem mass spectrometry and nuclear magnetic resonance spectroscopy led to the identification of phosphoric acid mono-(2,3,4-trihydroxy-4-quinoxaline-2-yl-butyl) ester (Q1), phosphoric acid mono-[2,3-dihydroxy-3-(3-methyl-quinoxaline-2-yl)-propyl] ester (Q2), and phosphoric acid mono-[2-hydroxy-3-(3-methyl-quinoxaline-2-yl)-propyl] ester (Q3). Q1 and Q2 were formed independently of Z. rouxii cells, whereas Q3 was detected only in incubation systems containing the yeast. Identification of Q2 demonstrated for the first time the chemical formation of 1-deoxy-2,3-hexodiulose-6-phosphate in the culture medium, a generally expected but never identified intermediate in the formation pathway of HDMF. Since HDMF was detected only in the presence of Z. rouxii cells, additional enzymatic steps were presumed. Incubation of periplasmic and cytosolic protein extracts obtained from yeast cells with D-fructose-1,6-bisphosphate led to the formation of HDMF, implying the presence of the required enzymes in both extracts.


Assuntos
Aromatizantes/metabolismo , Frutose/análogos & derivados , Frutose/metabolismo , Furanos/metabolismo , Zygosaccharomyces/metabolismo , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Frutose/química , Frutosedifosfatos/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Zygosaccharomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA