Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 131(9): 865-881, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28292971

RESUMO

Mitochondria play an essential role in improved cardiac ischaemic tolerance conferred by adaptation to chronic hypoxia. In the present study, we analysed the effects of continuous normobaric hypoxia (CNH) on mitochondrial functions, including the sensitivity of the mitochondrial permeability transition pore (MPTP) to opening, and infarct size (IS) in hearts of spontaneously hypertensive rats (SHR) and the conplastic SHR-mtBN strain, characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischaemia-resistant brown Norway (BN) strain. Rats were adapted to CNH (10% O2, 3 weeks) or kept at room air as normoxic controls. In the left ventricular mitochondria, respiration and cytochrome c oxidase (COX) activity were measured using an Oxygraph-2k and the sensitivity of MPTP opening was assessed spectrophotometrically as Ca2+-induced swelling. Myocardial infarction was analysed in anaesthetized open-chest rats subjected to 20 min of coronary artery occlusion and 3 h of reperfusion. The IS reached 68±3.0% and 65±5% of the area at risk in normoxic SHR and SHR-mtBN strains, respectively. CNH significantly decreased myocardial infarction to 46±3% in SHR. In hypoxic SHR-mtBN strain, IS reached 33±2% and was significantly smaller compared with hypoxic SHR. Mitochondria isolated from hypoxic hearts of both strains had increased detergent-stimulated COX activity and were less sensitive to MPTP opening. The maximum swelling rate was significantly lower in hypoxic SHR-mtBN strain compared with hypoxic SHR, and positively correlated with myocardial infarction in all experimental groups. In conclusion, the mitochondrial genome of SHR modulates the IS-limiting effect of adaptation to CNH by affecting mitochondrial energetics and MPTP sensitivity to opening.


Assuntos
DNA Mitocondrial/genética , Hipóxia , Mitocôndrias Cardíacas/genética , Animais , Western Blotting , Doença Crônica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genoma Mitocondrial/genética , Masculino , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR , Ratos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Pflugers Arch ; 465(10): 1477-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23636771

RESUMO

Dysfunction or abnormalities in the regulation of fatty acid translocase Cd36, a multifunctional membrane protein participating in uptake of long-chain fatty acids, has been linked to the development of heart diseases both in animals and humans. We have previously shown that the Cd36 transgenic spontaneously hypertensive rat (SHR-Cd36), with a wild type Cd36, has higher susceptibility to ischemic ventricular arrhythmias when compared to spontaneously hypertensive rat (SHR) carrying a mutant Cd36 gene, which may have been related to increased ß-adrenergic responsiveness of these animals (Neckar et al., 2012 Physiol. Genomics 44:173-182). The present study aimed to determine whether the insertion of the wild type Cd36 into SHR would affect the function of myocardial G protein-regulated adenylyl cyclase (AC) signaling. ß-Adrenergic receptors (ß-ARs) were characterized by radioligand-binding experiments and the expression of selected G protein subunits, AC, and protein kinase A (PKA) was determined by RT-PCR and Western blot analyses. There was no significant difference in the amount of trimeric G proteins, but the number of ß-ARs was higher (by about 35 %) in myocardial preparations from SHR-Cd36 as compared to SHR. Besides that, transgenic rats expressed increased amount (by about 20 %) of the dominant myocardial isoforms AC5/6 and contained higher levels of both nonphosphorylated (by 11 %) and phosphorylated (by 45 %) PKA. Differently stimulated AC activity in SHR-Cd36 significantly exceeded (by about 18-30 %) the enzyme activity in SHR. Changes at the molecular level were reflected by higher contractile responses to stimulation by the adrenergic agonist dobutamine. In summary, it can be concluded that the increased susceptibility to ischemic arrhythmias of SHR-Cd36 is attributable to upregulation of some components of the ß-AR signaling pathway, which leads to enhanced sensitization of AC and increased cardiac adrenergic responsiveness.


Assuntos
Adenilil Ciclases/metabolismo , Antígenos CD36/genética , Miocárdio/metabolismo , Transdução de Sinais , Adenilil Ciclases/genética , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Antígenos CD36/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dobutamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Contração Miocárdica , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Receptores Adrenérgicos beta/metabolismo
3.
J Physiol Sci ; 68(4): 441-454, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28567570

RESUMO

The ß-adrenergic signaling pathways and antioxidant defence mechanisms play important roles in maintaining proper heart function. Here, we examined the effect of chronic normobaric hypoxia (CNH, 10% O2, 3 weeks) on myocardial ß-adrenergic signaling and selected components of the antioxidant system in spontaneously hypertensive rats (SHR) and in a conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of the more ischemia-resistant Brown Norway strain. Our investigations revealed some intriguing differences between the two strains at the level of ß-adrenergic receptors (ß-ARs), activity of adenylyl cyclase (AC) and monoamine oxidase A (MAO-A), as well as distinct changes after CNH exposure. The ß2-AR/ß1-AR ratio was significantly higher in SHR-mtBN than in SHR, apparently due to increased expression of ß2-ARs. Adaptation to hypoxia elevated ß2-ARs in SHR and decreased the total number of ß-ARs in SHR-mtBN. In parallel, the ability of isoprenaline to stimulate AC activity was found to be higher in SHR-mtBN than that in SHR. Interestingly, the activity of MAO-A was notably lower in SHR-mtBN than in SHR, and it was markedly elevated in both strains after exposure to hypoxia. In addition to that, CNH markedly enhanced the expression of catalase and aldehyde dehydrogenase-2 in both strains, and decreased the expression of Cu/Zn superoxide dismutase in SHR. Adaptation to CNH intensified oxidative stress to a similar extent in both strains and elevated the IL-10/TNF-α ratio in SHR-mtBN only. These data indicate that alterations in the mitochondrial genome can result in peculiar changes in myocardial ß-adrenergic signaling, MAO-A activity and antioxidant defence and may, thus, affect the adaptive responses to hypoxia.


Assuntos
Hipóxia/metabolismo , Monoaminoxidase/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Adenilil Ciclases/metabolismo , Animais , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA