Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Parasitology ; 150(14): 1277-1285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37246557

RESUMO

The relationships between host phylogenetics, functional traits and parasites in wildlife remain poorly understood in the Neotropics, especially in habitats with marked seasonal variation. Here, we examined the effect of seasonality and host functional traits on the prevalence of avian haemosporidians (Plasmodium and Haemoproteus) in the Brazilian Caatinga, a seasonally dry tropical forest. 933 birds were evaluated for haemosporidian infections. We found a high parasitism prevalence (51.2%), which was correlated with phylogenetic relatedness among avian species. Prevalence varied drastically among the 20 well-sampled species, ranging from 0 to 70%. Seasonality was the main factor associated with infections, but how this abiotic condition influenced parasite prevalence varied according to the host-parasite system. Plasmodium prevalence increased during the rainy season and, after excluding the large sample size of Columbiformes (n = 462/933), Plasmodium infection rate was maintained high in the wet season and showed a negative association with host body mass. No association was found between non-Columbiform bird prevalence and seasonality or body mass when evaluating both Plasmodium and Haemoproteus or only Haemoproteus infections. Parasite community was composed of 32 lineages including 7 new lineages. We evidenced that even dry domains can harbour a high prevalence and diversity of vector-borne parasites and pointed out seasonality as a ruling factor.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Filogenia , Prevalência , Brasil/epidemiologia , Plasmodium/genética , Aves/parasitologia , Haemosporida/genética , Florestas , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
2.
Parasitol Res ; 119(8): 2631-2640, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32556500

RESUMO

The genus Plasmodium (Plasmodiidae) ranks among the most widespread intracellular protozoan parasites affecting a wide range of mammals, birds, and reptiles. Little information is available about lizard malaria parasites in South America, and the pathological features of the resulting parasitoses remain unknown or poorly understood. To partially fill in these gaps, we conducted blood smear analysis, molecular detection, and phylogenetic and pathological investigations in lizards inhabiting an Atlantic Forest fragment in Paraiba, Brazil. From 104 striped forest whiptails (Kentropyx calcarata) screened for the presence of haemosporidian parasites, 67 (64.4%) were positive. Four of five Amazon lava lizards (Strobilurus torquatus) we collected from this same area were also positive. A total of 27 forest whiptails were infected with a new genetic lineage of Plasmodium kentropyxi and other Plasmodium lineages were also detected. Histopathological analysis in infected forest whiptails revealed systemic intraerythrocytic Plasmodium stages, mainly gametocytes, in the liver, lung, and heart. Also, the liver of infected lizards had mild to moderate levels of Kupffer cell and melanomacrophage hypertrophy/hyperplasia with sinusoid leukocytosis. Overall, our findings suggest that an endemic Plasmodium species causes histological alterations that are not related to major pathological processes in striped forest whiptails.


Assuntos
Lagartos/parasitologia , Plasmodium/genética , Plasmodium/patogenicidade , Infecções Protozoárias em Animais/parasitologia , Animais , Brasil , Eritrócitos/parasitologia , Florestas , Fígado/parasitologia , Fígado/patologia , Filogenia , Plasmodium/classificação , Infecções Protozoárias em Animais/patologia
3.
Parasitol Res ; 118(12): 3497-3508, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720833

RESUMO

Avian malaria is a mosquito-borne disease caused by Plasmodium spp. protozoa, and penguins are considered particularly susceptible to this disease, developing rapid outbreaks with potentially high mortality. We report on an outbreak of avian malaria in Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center in Espírito Santo, southeast Brazil. In August and September 2015, a total of 89 Magellanic penguins (87 juveniles and 2 adults) received care at Institute of Research and Rehabilitation of Marine Animals. Over a period of 2 weeks, Plasmodium infections were identified in eight individuals (9.0%), four of which died (mortality = 4.5%, lethality = 50%). Blood smears and sequencing of the mitochondrial cytochrome b gene revealed the presence of Plasmodium lutzi SPMAG06, Plasmodium elongatum GRW06, Plasmodium sp. PHPAT01, Plasmodium sp. SPMAG10, and Plasmodium cathemerium (sequencing not successful). Two unusual morphological features were observed in individuals infected with lineage SPMAG06: (a) lack of clumping of pigment granules and (b) presence of circulating exoerythrocytic meronts. Hematological results (packed cell volume, plasma total solids, complete blood cell counts) of positive individuals showed differences from those of negative individuals depending on the lineages, but there was no overarching pattern consistently observed for all Plasmodium spp. The epidemiology of the outbreak and the phylogeography of the parasite lineages detected in this study support the notion that malarial infections in penguins undergoing rehabilitation in Brazil are the result of the spillover inoculation by plasmodia that circulate in the local avifauna, especially Passeriformes.


Assuntos
Doenças das Aves/parasitologia , Malária Aviária/parasitologia , Plasmodium/crescimento & desenvolvimento , Spheniscidae/parasitologia , Animais , Doenças das Aves/sangue , Doenças das Aves/epidemiologia , Brasil/epidemiologia , Surtos de Doenças , Feminino , Hematologia , Malária Aviária/sangue , Malária Aviária/epidemiologia , Masculino , Filogenia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/isolamento & purificação
4.
Parasitology ; 145(14): 1949-1958, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29739479

RESUMO

Habitat modification may facilitate the emergence of novel pathogens, and the expansion of agricultural frontiers make domestic animals important sources of pathogen spillover to wild animals. We demonstrate for the first time that Plasmodium juxtanucleare, a widespread parasite from domestic chickens, naturally infects free-living passerines. We sampled 68 wild birds within and at the border of conservation units in central Brazil composed by Cerrado, a highly threatened biome. Seven out of 10 passerines captured in the limits of a protected area with a small farm were infected by P. juxtanucleare as was confirmed by sequencing a fragment of the parasite's cytochrome b. Blood smears from these positive passerines presented trophozoites, meronts and gametocytes compatible with P. juxtanucleare, meaning these birds are competent hosts for this parasite. After these intriguing results, we sampled 30 backyard chickens managed at the area where P. juxtanucleare-infected passerines were captured, revealing one chicken infected by the same parasite lineage. We sequenced the almost complete mitochondrial genome from all positive passerines, revealing that Brazilian and Asian parasites are closely related. P. juxtanucleare can be lethal to non-domestic hosts under captive and rehabilitation conditions, suggesting that this novel spillover may pose a real threat to wild birds.


Assuntos
Animais Domésticos/parasitologia , Galinhas/parasitologia , Columbidae/parasitologia , Malária Aviária/transmissão , Plasmodium/patogenicidade , Animais , Brasil , Citocromos b/genética , Ecossistema , Fazendas , Genoma Mitocondrial , Filogenia
5.
Malar J ; 16(1): 107, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270152

RESUMO

BACKGROUND: Considerable success in reducing malaria incidence and mortality has been achieved in Brazil, leading to discussions over the possibility of moving towards elimination. However, more than reporting and counting clinical cases, elimination will require the use of efficient tools and strategies for measuring transmission dynamics and detecting the infectious reservoir as the primary indicators of interest for surveillance and evaluation. Because acquisition and maintenance of anti-malarial antibodies depend on parasite exposure, seroprevalence rates could be used as a reliable tool for assessing malaria endemicity and an adjunct measure for monitoring transmission in a rapid and cost-effective manner. METHODS: This systematic review synthesizes the existing literature on seroprevalence of malaria in the Brazilian Amazon Basin. Different study designs (cross-sectional surveys and longitudinal studies) with reported serological results in well-defined Brazilian populations were considered. Medline (via PubMed), EMBASE and LILACS databases were screened and the articles were included per established selection criteria. Data extraction was performed by two authors and a modified critical appraisal tool was applied to assess the quality and completeness of cross-sectional studies regarding defined variables of interest. RESULTS: From 220 single records identified, 23 studies were included in this systematic review for the qualitative synthesis. Five studies reported serology results on Plasmodium falciparum, 14 papers assessed Plasmodium vivax and four articles reported results on both Plasmodium species. Considerable heterogeneity among the evaluated malarial antigens, including sporozoite and blood stage antigens, was observed. The majority of recent studies analysed IgG responses against P. vivax antigens reflecting the species distribution pattern in Brazil over the last decades. Most of the published papers were cross-sectional surveys (73.9%) and only six cohort studies were included in this review. Three studies pointed to an association between antibodies against circumsporozoite protein of both P. falciparum and P. vivax and malaria exposure. Furthermore, five out 13 cross-sectional studies evidenced a positive association between IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein 1 of P. vivax (PvMSP119) and malaria exposure. CONCLUSIONS: This systematic review identifies potential biomarkers of P. falciparum and P. vivax exposure in areas with variable and unstable malaria transmission in Brazil. However, this study highlights the need for standardization of further studies to provide an ideal monitoring tool to evaluate trends in malaria transmission and the effectiveness of malaria intervention programmes in Brazil. Moreover, the score-based weighted tool developed and used in this study still requires further validation.


Assuntos
Anticorpos Antiprotozoários/sangue , Biomarcadores/sangue , Malária/epidemiologia , Malária/imunologia , Brasil/epidemiologia , Humanos , Estudos Soroepidemiológicos
6.
Parasitology ; 144(7): 984-993, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28290270

RESUMO

Parasites of the genera Plasmodium and Haemoproteus (Apicomplexa: Haemosporida) are a diverse group of pathogens that infect birds nearly worldwide. Despite their ubiquity, the ecological and evolutionary factors that shape the diversity and distribution of these protozoan parasites among avian communities and geographic regions are poorly understood. Based on a survey throughout the Neotropics of the haemosporidian parasites infecting manakins (Pipridae), a family of Passerine birds endemic to this region, we asked whether host relatedness, ecological similarity and geographic proximity structure parasite turnover between manakin species and local manakin assemblages. We used molecular methods to screen 1343 individuals of 30 manakin species for the presence of parasites. We found no significant correlations between manakin parasite lineage turnover and both manakin species turnover and geographic distance. Climate differences, species turnover in the larger bird community and parasite lineage turnover in non-manakin hosts did not correlate with manakin parasite lineage turnover. We also found no evidence that manakin parasite lineage turnover among host species correlates with range overlap and genetic divergence among hosts. Our analyses indicate that host switching (turnover among host species) and dispersal (turnover among locations) of haemosporidian parasites in manakins are not constrained at this scale.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/fisiologia , Interações Hospedeiro-Parasita , Malária/veterinária , Passeriformes , Infecções Protozoárias em Animais/epidemiologia , Animais , Doenças das Aves/parasitologia , Citocromos b/genética , Haemosporida/genética , Malária/epidemiologia , Malária/parasitologia , Panamá/epidemiologia , Filogenia , Plasmodium/genética , Plasmodium/fisiologia , Prevalência , Infecções Protozoárias em Animais/parasitologia , Proteínas de Protozoários/genética , América do Sul/epidemiologia
7.
Infect Immun ; 82(10): 3990-4000, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25092911

RESUMO

The pathogenesis of malaria is complex, generating a broad spectrum of clinical manifestations. One of the major complications and concerns in malaria is anemia, which is responsible for considerable morbidity in the developing world, especially in children and pregnant women. Despite its enormous health importance, the immunological mechanisms involved in malaria-induced anemia remain incompletely understood. Plasmodium vivax, one of the causative agents of human malaria, is known to induce a strong inflammatory response with a robust production of immune effectors, including cytokines and antibodies. Therefore, it is possible that the extent of the immune response not only may facilitate the parasite killing but also may provoke severe illness, including anemia. In this review, we consider potential immune effectors and their possible involvement in generating this clinical outcome during P. vivax infections.


Assuntos
Anemia/etiologia , Anemia/imunologia , Malária Vivax/complicações , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Plasmodium vivax/fisiologia , Humanos
8.
PeerJ ; 12: e17632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948214

RESUMO

Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods: We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results: This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.


Assuntos
Anticorpos Antiprotozoários , Biomarcadores , Malária Vivax , Proteína 1 de Superfície de Merozoito , Plasmodium vivax , Humanos , Malária Vivax/imunologia , Malária Vivax/sangue , Malária Vivax/parasitologia , Malária Vivax/transmissão , Malária Vivax/diagnóstico , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium vivax/imunologia , Biomarcadores/sangue , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Adulto Jovem , Adolescente , Sequência de Aminoácidos
9.
Parasitology ; 140(14): 1777-88, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23953391

RESUMO

The pathogens Plasmodium juxtanucleare and chicken anaemia virus (CAV) are easily transmitted and potentially harmful to chickens. In this study, we established an experimental model to investigate the effects of avian malaria caused by P. juxtanucleare in white leghorn specific-pathogen-free (SPF) chicks previously immunosuppressed with CAV. Parasitaemia, haematological variables and clinical and pathological parameters were determined in four different experimental groups: chicks coinfected by CAV and P. juxtanucleare strain (Coinfected group), chicks exclusively infected by CAV (CAV group) or P. juxtanucleare (Malaria group) and uninfected chicks (Control group). Our data demonstrated that P. juxtanucleare parasitaemia was significantly higher in the Coinfected group. Furthermore, haematological parameters, including the RBC, haematocrit and haemoglobin concentration were significantly reduced in coinfected chicks. In agreement with the changes observed in haematological features, the mortality among coinfected chicks was higher compared with animals with single infections. Clinical analysis indicated moderate changes related to different organs size (bursa of Fabricius, heart and liver) in coinfected birds. The experimental coinfection of SPF chickens with P. juxtanucleare and CAV may represent a research tool for the study of avian malaria after CAV immunosuppression, enabling measurement of the impacts caused by different pathogens during malarial infection.


Assuntos
Vírus da Anemia da Galinha/fisiologia , Infecções por Circoviridae/veterinária , Malária Aviária/parasitologia , Plasmodium/classificação , Plasmodium/fisiologia , Doenças das Aves Domésticas/parasitologia , Animais , Galinhas , Infecções por Circoviridae/complicações , Coinfecção , Hospedeiro Imunocomprometido , Malária Aviária/complicações , Filogenia , Plasmodium/genética , Doenças das Aves Domésticas/etiologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos
10.
Parasitology ; 139(8): 1021-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22405405

RESUMO

Arid zones of northern Venezuela are represented by isolated areas, important from an ornithological and ecological perspective due to the occurrence of restricted-range species of birds. We analysed the prevalence and molecular diversity of haemosporidian parasites of wild birds in this region by screening 527 individuals (11 families and 20 species) for parasite mitochondrial DNA. The overall prevalence of parasites was 41%, representing 17 mitochondrial lineages: 7 of Plasmodium and 10 of Haemoproteus. Two parasite lineages occurred in both the eastern and western regions infecting a single host species, Mimus gilvus. These lineages are also present throughout northern and central Venezuela in a variety of arid and mesic habitats. Some lineages found in this study in northern Venezuela have also been observed in different localities in the Americas, including the West Indies. In spite of the widespread distributions of some of the parasite lineages found in northern Venezuela, several, including some that are relatively common (e.g. Ven05 and Ven06), have not been reported from elsewhere. Additional studies are needed to characterize the host and geographical distribution of avian malaria parasite lineages, which will provide a better understanding of the influence of landscape, vector abundance and diversity, and host identity on haemosporidian parasite diversity and prevalence.


Assuntos
Doenças das Aves/epidemiologia , Aves/parasitologia , Haemosporida/genética , Plasmodium/genética , Infecções Protozoárias em Animais/epidemiologia , Animais , Animais Selvagens , Doenças das Aves/genética , Doenças das Aves/parasitologia , Citocromos b/genética , DNA Mitocondrial/genética , DNA de Protozoário/genética , Clima Desértico , Feminino , Variação Genética , Haemosporida/classificação , Haemosporida/isolamento & purificação , Especificidade de Hospedeiro , Masculino , Filogenia , Filogeografia , Plasmodium/classificação , Plasmodium/isolamento & purificação , Prevalência , Infecções Protozoárias em Animais/genética , Infecções Protozoárias em Animais/parasitologia , Venezuela/epidemiologia
11.
PeerJ ; 10: e13485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611171

RESUMO

South America has different biomes with a high richness of wild bird species and Diptera vectors, representing an ideal place to study the influence of habitat on vector-borne parasites. In order to better understand how different types of habitats do or do not influence the prevalence of haemosporidians, we performed a new analysis of two published datasets comprising wild birds from the Brazilian Savanna (Cerrado) as well as wild birds from the Venezuelan Arid Zone. We investigated the prevalence and genetic diversity of haemosporidian parasites belonging to two genera: Plasmodium and Haemoproteus. We evaluated data from 676 wild birds from the Cerrado and observed an overall prevalence of 49%, whereas, in the Venezuelan Arid Zone, we analyzed data from 527 birds and found a similar overall prevalence of 43%. We recovered 44 lineages, finding Plasmodium parasites more prevalent in the Cerrado (15 Plasmodium and 12 Haemoproteus lineages) and Haemoproteus in the Venezuelan Arid Zone (seven Plasmodium and 10 Haemoproteus lineages). No difference was observed on parasite richness between the two biomes. We observed seven out of 44 haemosporidian lineages that are shared between these two distinct South American biomes. This pattern of parasite composition and prevalence may be a consequence of multiple factors, such as host diversity and particular environmental conditions, especially precipitation that modulate the vector's dynamics. The relationship of blood parasites with the community of hosts in large and distinct ecosystems can provide more information about what factors are responsible for the variation in the prevalence and diversity of these parasites in an environment.


Assuntos
Doenças das Aves , Haemosporida , Malária , Parasitos , Plasmodium , Animais , Parasitos/genética , Ecossistema , Prevalência , Doenças das Aves/epidemiologia , Plasmodium/genética , Haemosporida/genética , Malária/epidemiologia , Brasil/epidemiologia , Aves/parasitologia
12.
PeerJ ; 9: e11555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221715

RESUMO

Avian haemosporidians are parasites with great capacity to spread to new environments and new hosts, being considered a good model to host-parasite interactions studies. Here, we examine avian haemosporidian parasites in a protected area covered by Restinga vegetation in northeastern Brazil, to test the hypothesis that haemosporidian prevalence is related to individual-level traits (age and breeding season), species-specific traits (diet, foraging strata, period of activity, species body weight, migratory status, and nest shape), and climate factors (temperature and rainfall). We screened DNA from 1,466 birds of 70 species captured monthly from April 2013 to March 2015. We detected an overall prevalence (Plasmodium/Haemoproteus infection) of 22% (44 host species) and parasite's lineages were identified by mitochondrial cyt b gene. Our results showed that migration can be an important factor predicting the prevalence of Haemoproteus (Parahaemoproteus), but not Plasmodium, in hosts. Besides, the temperature, but not rainfall, seems to predict the prevalence of Plasmodium in this bird community. Neither individual-level traits analyzed nor the other species-specific traits tested were related to the probability of a bird becoming infected by haemosporidians. Our results point the importance of conducting local studies in particular environments to understand the degree of generality of factors impacting parasite prevalence in bird communities. Despite our attempts to find patterns of infection in this bird community, we should be aware that an avian haemosporidian community organization is highly complex and this complexity can be attributed to an intricate net of factors, some of which were not observed in this study and should be evaluated in future studies. We evidence the importance of looking to host-parasite relationships in a more close scale, to assure that some effects may not be obfuscated by differences in host life-history.

13.
Parasitol Int ; 80: 102204, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33045411

RESUMO

Human induced changes on landscape can alter the biotic and abiotic factors that influence the transmission of vector-borne parasites. To examine how infection rates of vector-transmitted parasites respond to changes on natural landscapes, we captured 330 Blue-black Grassquits (Volatinia jacarina) in Brazilian biomes and assessed the prevalence and diversity of avian haemosporidian parasites (Plasmodium and Haemoproteus) across avian host populations inhabiting environment under different disturbance and climatic conditions. Overall prevalence in Blue-black Grassquits was low (11%) and infection rates exhibited considerable spatial variation, ranging from zero to 39%. Based on genetic divergence of cytochrome b gene, we found two lineages of Haemoproteus (Parahaemoproteus) and 10 of Plasmodium. We showed that Blue-black Grassquit populations inhabiting sites with higher proportion of native vegetation cover were more infected across Brazil. Other landscape metrics (number of water bodies and distance to urban areas) and climatic condition (temperature and precipitation) known to influence vector activity and promote avian malaria transmission did not explain infection probability in Blue-black Grassquit populations. Moreover, breeding season did not explain prevalence across avian host populations. Our findings suggest that avian haemosporidian prevalence and diversity in Blue-black Grassquit populations are determined by recent anthropogenic changes in vegetation cover that may alter microclimate, thus influencing vector activity and parasite transmission.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/fisiologia , Infecções Protozoárias em Animais/epidemiologia , Aves Canoras , Animais , Doenças das Aves/parasitologia , Brasil/epidemiologia , Ecossistema , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Plasmodium/fisiologia , Prevalência , Infecções Protozoárias em Animais/parasitologia
14.
Int J Parasitol ; 51(9): 719-728, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33722680

RESUMO

Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Animais , Doenças das Aves/epidemiologia , Florestas , Haemosporida/genética , Humanos , Malária Aviária/epidemiologia , Filogenia , Plasmodium/genética , Prevalência
15.
Malar J ; 9: 229, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20696056

RESUMO

BACKGROUND: Humoral immune responses play a key role in the development of immunity to malaria, but the host genetic factors that contribute to the naturally occurring immune responses to malarial antigens are not completely understood. The aim of the present investigation was to determine whether, in subjects exposed to malaria, GM and KM allotypes--genetic markers of immunoglobulin gamma and kappa-type light chains, respectively--contribute to the magnitude of natural antibody responses to target antigens that are leading vaccine candidates for protection against Plasmodium vivax. METHODS: Sera from 210 adults, who had been exposed to malaria transmission in the Brazilian Amazon endemic area, were allotyped for several GM and KM determinants by a standard hemagglutination-inhibition method. IgG subclass antibodies to P. vivax apical membrane antigen 1 (PvAMA-1) and merozoite surface protein 1 (PvMSP1-19) were determined by an enzyme-linked immunosorbent assay. Multiple linear regression models and the non-parametric Mann-Whitney test were used for data analyses. RESULTS: IgG1 antibody levels to both PvMSP1-19 and PvAMA-1 antigens were significantly higher (P = 0.004, P = 0.002, respectively) in subjects with the GM 3 23 5,13,14 phenotype than in those who lacked this phenotype. CONCLUSIONS: Results presented here show that immunoglobulin GM allotypes contribute to the natural antibody responses to P. vivax malaria antigens. These findings have important implications for the effectiveness of vaccines containing PvAMA-1 or PvMSP1-19 antigens. They also shed light on the possible role of malaria as one of the evolutionary selective forces that may have contributed to the maintenance of the extensive polymorphism at the GM loci.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Imunoglobulina G/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adulto , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Brasil , Ensaio de Imunoadsorção Enzimática , Feminino , Marcadores Genéticos , Humanos , Imunoglobulina G/sangue , Alótipos Gm de Imunoglobulina/genética , Alótipos Gm de Imunoglobulina/imunologia , Alótipos Km de Imunoglobulina/genética , Alótipos Km de Imunoglobulina/imunologia , Modelos Lineares , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Masculino , Proteínas de Membrana/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Pessoa de Meia-Idade , Fenótipo , Plasmodium vivax/genética , Proteínas de Protozoários/imunologia , Estatísticas não Paramétricas , Adulto Jovem
16.
Parasitol Int ; 78: 102148, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32464257

RESUMO

This study reports the case of a Manx shearwater (Puffinus puffinus) that died from avian malaria while under care at a rehabilitation center in Espírito Santo, Brazil. The bird was rescued on October 2018, and remained under care until it died suddenly on January 2019. A blood smear produced 8 days before death was negative for parasites, whereas a blood smear produced post-mortem revealed a high parasitemia by a parasite resembling Plasmodium cathemerium. The sequence of a 412 bp segment of the cyt-b gene was identical to that of lineage PADOM09, and phylogenetic analysis corroborated that this parasite was closely-related to known lineages of P. cathemerium. The acuteness and severity of the infection documented in this case suggest that seabirds of the order Procellariiformes might be highly susceptible to Plasmodium infections, raising the concern that avian malaria may present a significant threat to their conservation.


Assuntos
Aves , Malária Aviária/diagnóstico , Plasmodium/isolamento & purificação , Animais , Brasil , Malária Aviária/parasitologia , Plasmodium/classificação
17.
Sci Rep ; 10(1): 8480, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439889

RESUMO

The use of a sensitive and accurate parasite detection methodology is crucial in studies exploring prevalence of parasites in host populations or communities, and uncertainty in identifying parasite genera and/or lineages may limit the understanding of host-parasite interactions. Here, we used a multistate occupancy approach that accounts for imperfect detection to assess whether sex and breeding season influenced the prevalence of a specific Haemoproteus lineage (TARUF02) in a white-lined tanager population. Likewise, we explored whether the probability of detecting the target parasite in an infected bird using PCR and sequencing analyses may be influenced by season and host sex. We found little evidence that sex influenced the probability of an individual host being infected by a haemosporidian parasite. Conversely, we found that the probability of infection by Haemoproteus TARUF02 was ~30% higher during the breeding season, reflecting a higher prevalence of this parasite in this season. The probability that PCR detects DNA of haemosporidian parasite was higher for female birds, suggesting that they are more prone to be parasitized with parasitemia levels that are more successfully detected by molecular analysis. Sequencing successfully determined the Haemoproteus TARUF02 lineage in 60% of samples collected during the breeding season and 84% of samples collected during the non-breeding season. Understanding the ecology of hosts and aspects of their physiology that may influence the parasite infection is essential to better understanding of hemoparasite infections and how parasites influence their native hosts, through decreasing reproductive success, lifespan, and/or survival.


Assuntos
Doenças das Aves/diagnóstico , Aves/parasitologia , Variação Genética , Haemosporida/isolamento & purificação , Interações Hospedeiro-Parasita , Infecções Protozoárias em Animais/diagnóstico , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/crescimento & desenvolvimento , Feminino , Haemosporida/genética , Masculino , Prevalência , Infecções Protozoárias em Animais/parasitologia , Estações do Ano
18.
BMC Evol Biol ; 8: 123, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18445274

RESUMO

BACKGROUND: In malaria parasites (genus Plasmodium), ama-1 is a highly polymorphic locus encoding the Apical Membrane Protein-1, and there is evidence that the polymorphism at this locus is selectively maintained. We tested the hypothesis that polymorphism at the ama-1 locus reflects population history in Plasmodium vivax, which is believed to have originated in Southeast Asia and is widely geographically distributed. In particular, we tested for a signature of the introduction of P. vivax into the New World at the time of the European conquest and African slave trade and subsequent population expansion. RESULTS: One hundred and five ama-1 sequences were generated and analyzed from samples from six different Brazilian states and compared with database sequences from the Old World. Old World populations of P. vivax showed substantial evidence of population substructure, with high sequence divergence among localities at both synonymous and nonsynonymous sites, while Brazilian isolates showed reduced diversity and little population substructure. CONCLUSION: These results show that genetic diversity in P. vivax AMA-1 reflects population history, with population substructure characterizing long-established Old World populations, whereas Brazilian populations show evidence of loss of diversity and recent population expansion. NOTE: Nucleotide sequence data reported is this paper are available in the GenBanktrade mark database under the accession numbers EF031154 - EF031216 and EF057446 - EF057487.


Assuntos
Antígenos de Protozoários/genética , Proteínas de Membrana/genética , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Animais , Sequência de Bases , Brasil , Dados de Sequência Molecular , Filogenia , Plasmodium vivax/classificação , Reação em Cadeia da Polimerase
19.
Mem Inst Oswaldo Cruz ; 103(7): 674-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19057817

RESUMO

Studies on concomitant schistosomiasis and human and experimental malaria have shown a variation in the immunospecific response, as well as an increase in the severity of both parasitoses. In the present study, a murine co-infection model was used to determine the effects of a co-infection with Schistosoma mansoni and Plasmodium berghei on the protective immunity acquired by repeated malarial infections and subsequent curative treatment with chloroquine. Our results have demonstrated that, compared to an infection with P. berghei only, the co-infection increases the malarial parasitaemia and decreases the survival rate. Indeed, mice that were immunized by infection and treatment with drug displayed no mortality whereas co-infected mice showed a reduced protective efficacy of immunization against P. berghei (mortality > 60%). Interestingly, this high mortality rate was not associated with high levels of parasitaemia. Our findings support the idea of a suppressive effect of a Schistosoma co-infection on the anti-malarial protection by immunization. This result reveals a possible drawback of the development of anti-malarial vaccines, especially considering the wide endemic areas for both parasitoses.


Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Malária/imunologia , Parasitemia/parasitologia , Esquistossomose mansoni/imunologia , Animais , Feminino , Malária/complicações , Malária/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/tratamento farmacológico , Parasitemia/imunologia , Plasmodium berghei/imunologia , Schistosoma mansoni , Esquistossomose mansoni/complicações
20.
Acta Trop ; 188: 93-100, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30171836

RESUMO

Haemosporidian parasites of the genus Haemoproteus are widespread and can cause disease and even mortality in birds under natural and captive conditions. The Black-fronted Piping-guan (Aburria jacutinga) is an endangered Neotropical bird of the Cracidae (Galliformes) going through a reintroduction program to avoid extinction. We used microscopic examination and partial cytochrome b DNA sequencing to describe a new Haemoproteus species infecting Black-fronted Piping-guans bred and raised in captivity that were reintroduced into the Atlantic rainforest. Haemoproteus (Parahaemoproteus) paraortalidum n. sp. was detected in the blood of 19 out of 29 examined birds. The new species is distinguished from other haemoproteids due to the shape of gametocytes, which have pointed ends in young stages, and due to the presence of vacuole-like unstained spaces in macrogametocytes and numerous volutin granules both in macro- and microgametocytes. Illustrations of the new species are provided. Phylogenetic inference positioned this parasite in the Parahaemoproteus subgenus clade together with the other two Haemoproteus genetic lineages detected in cracids up to date. We discuss possible implications of the reintroduction of birds infected with haemosporidian parasites into the wild. Treatment of Haemoproteus infections remains insufficiently studied, but should be considered for infected birds before reintroduction to improve host reproductive and survival rates after release.


Assuntos
Galliformes/parasitologia , Haemosporida/classificação , Animais , Citocromos b/genética , Haemosporida/genética , Haemosporida/isolamento & purificação , Filogenia , Prevalência , Infecções Protozoárias em Animais/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA