Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 5(12): 2211-27, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16959763

RESUMO

Identification of protein-protein interactions is crucial for unraveling cellular processes and biochemical mechanisms of signal transduction. Here we describe, for the first time, the application of the tandem affinity purification (TAP) and LC-MS method to the characterization of protein complexes from transgenic mice. The TAP strategy developed in transgenic mice allows the emplacement of complexes in their physiological environment in contact with proteins that might only be specifically expressed in certain tissues while simultaneously ensuring the right stoichiometry of the TAP protein versus their binding partners and represents a novelty in proteomics approaches used so far. Mouse lines expressing TAP-tagged 14-3-3zeta protein were generated, and protein interactions were determined. 14-3-3 proteins are general regulators of cell signaling and represent up to 1% of the total brain protein. This study allowed the identification of almost 40 novel 14-3-3zeta-binding proteins. Biochemical and functional characterization of some of these interactions revealed new mechanisms of action of 14-3-3zeta in several signaling pathways, such as glutamate receptor signaling via binding to homer homolog 3 (Homer 3) and in cytoskeletal rearrangements and spine morphogenesis by binding and regulating the activity of the signaling complex formed by G protein-coupled receptor kinase-interactor 1 (GIT1) and p21-activated kinase-interacting exchange factor beta (betaPIX).


Assuntos
Proteínas 14-3-3/metabolismo , Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteômica/métodos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Células HeLa , Proteínas de Arcabouço Homer , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Modelos Biológicos , Complexos Multiproteicos/isolamento & purificação , Proteínas do Tecido Nervoso/isolamento & purificação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
2.
J Biol Chem ; 279(7): 5915-23, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14594945

RESUMO

The MARK protein kinases were originally identified by their ability to phosphorylate a serine motif in the microtubule-binding domain of tau that is critical for microtubule binding. Here, we report the cloning and expression of a novel human paralog, MARK4, which shares 75% overall homology with MARK1-3 and is predominantly expressed in brain. Homology is most pronounced in the catalytic domain (90%), and MARK4 readily phosphorylates tau and the related microtubule-associated protein 2 (MAP2) and MAP4. In contrast to the three paralogs that all exhibit uniform cytoplasmic localization, MARK4 colocalizes with the centrosome and with microtubules in cultured cells. Overexpression of MARK4 causes thinning out of the microtubule network, concomitant with a reorganization of microtubules into bundles. In line with these findings, we show that a tandem affinity-purified MARK4 protein complex contains alpha-, beta-, and gamma-tubulin. In differentiated neuroblastoma cells, MARK4 is localized prominently at the tips of neurite-like processes. We suggest that although the four MARK/PAR-1 kinases might play multiple cellular roles in concert with different targets, MARK4 is likely to be directly involved in microtubule organization in neuronal cells and may contribute to the pathological phosphorylation of tau in Alzheimer's disease.


Assuntos
Centrossomo/química , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Doença de Alzheimer , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Northern Blotting , Encéfalo/metabolismo , Células CHO , Domínio Catalítico , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Clonagem Molecular , Cosmídeos/metabolismo , Cricetinae , Citoplasma/metabolismo , DNA Complementar/metabolismo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Dados de Sequência Molecular , Neuroblastoma/metabolismo , Fosforilação , Filogenia , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina/química , Transfecção , Proteínas tau/metabolismo
3.
J Biol Chem ; 279(13): 12804-11, 2004 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-14676191

RESUMO

The polarization of eukaryotic cells is controlled by the concerted activities of asymmetrically localized proteins. The PAR proteins, first identified in Caenorhabditis elegans, are common regulators of cell polarity conserved from nematode and flies to man. However, little is known about the molecular mechanisms by which these proteins and protein complexes establish cell polarity in mammals. We have mapped multiprotein complexes formed around the putative human Par orthologs MARK4 (microtubule-associated protein/microtubule affinity-regulating kinase 4) (Par-1), Par-3, LKB1 (Par-4), 14-3-3zeta and eta (Par-5), Par-6a, -b, -c, and PKClambda (PKC3). We employed a proteomic approach comprising tandem affinity purification (TAP) of protein complexes from cultured cells and protein sequencing by tandem mass spectrometry. From these data we constructed a highly interconnected protein network consisting of three core complex "modules" formed around MARK4 (Par-1), Par-3.Par-6, and LKB1 (Par-4). The network confirms most previously reported interactions. In addition we identified more than 50 novel interactors, some of which, like the 14-3-3 phospho-protein scaffolds, occur in more than one distinct complex. We demonstrate that the complex formation between LKB1.Par-4, PAPK, and Mo25 results in the translocation of LKB1 from the nucleus to the cytoplasm and to tight junctions and show that the LKB1 complex may activate MARKs, which are known to introduce 14-3-3 binding sites into several substrates. Our findings suggest co-regulation and/or signaling events between the distinct Par complexes and provide a basis for further elucidation of the molecular mechanisms that govern cell polarity.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteoma , Proteínas 14-3-3 , Quinases Proteína-Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Linhagem Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , DNA Complementar/metabolismo , Cães , Humanos , Isoenzimas , Espectrometria de Massas , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Testes de Precipitina , Ligação Proteica , Proteína Quinase C/química , Transporte Proteico , Proteínas/química , Homologia de Sequência de Aminoácidos , Tirosina 3-Mono-Oxigenase/química
4.
Nature ; 415(6868): 141-7, 2002 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-11805826

RESUMO

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.


Assuntos
Proteoma/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Células Cultivadas , Cromatografia de Afinidade , Marcação de Genes , Humanos , Substâncias Macromoleculares , Proteoma/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sensibilidade e Especificidade , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA