Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Semin Thromb Hemost ; 50(2): 188-199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37201535

RESUMO

Tissue factor (TF) is the primary initiator of blood coagulation in humans. As improper intravascular TF expression and procoagulant activity underlie numerous thrombotic disorders, there has been longstanding interest in the contribution of heritable genetic variation in F3, the gene encoding TF, to human disease. This review seeks to comprehensively and critically synthesize small case-control studies focused on candidate single nucleotide polymorphisms (SNPs), as well as modern genome-wide association studies (GWAS) seeking to discover novel associations between variants and clinical phenotypes. Where possible, correlative laboratory studies, expression quantitative trait loci, and protein quantitative trait loci are evaluated to glean potential mechanistic insights. Most disease associations implicated in historical case-control studies have proven difficult to replicate in large GWAS. Nevertheless, SNPs linked to F3, such as rs2022030, are associated with increased F3 mRNA expression, monocyte TF expression after endotoxin exposure, and circulating levels of the prothrombotic biomarker D-dimer, consistent with the central role of TF in the initiation of blood coagulation.


Assuntos
Estudo de Associação Genômica Ampla , Tromboplastina , Humanos , Tromboplastina/genética , Tromboplastina/metabolismo , Polimorfismo de Nucleotídeo Único , Monócitos/metabolismo , Locos de Características Quantitativas
2.
Br J Cancer ; 126(6): 927-936, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931040

RESUMO

BACKGROUND: Bone-marrow-derived haematopoietic stem and progenitor cells (HSPCs) are a prominent part of the highly complex tumour microenvironment (TME) where they localise within tumours and maintain haematopoietic potency. Understanding the role HSPCs play in tumour growth and response to radiation therapy (RT) may lead to improved patient treatments and outcomes. METHODS: We used a mouse model of non-small cell lung carcinoma where tumours were exposed to RT regimens alone or in combination with GW2580, a pharmacological inhibitor of colony stimulating factor (CSF)-1 receptor. RT-PCR, western blotting and immunohistochemistry were used to quantify expression levels of factors that affect HSPC differentiation. DsRed+ HSPC intratumoural activity was tracked using flow cytometry and confocal microscopy. RESULTS: We demonstrated that CSF-1 is enhanced in the TME following exposure to RT. CSF-1 signaling induced intratumoural HSPC differentiation into M2 polarised tumour-associated macrophages (TAMs), aiding in post-RT tumour survival and regrowth. In contrast, hyperfractionated/pulsed radiation therapy (PRT) and GW2580 ablated this process resulting in improved tumour killing and mouse survival. CONCLUSIONS: Tumours coopt intratumoural HSPC fate determination via CSF-1 signaling to overcome the effects of RT. Thus, limiting intratumoural HSPC activity represents an attractive strategy for improving the clinical treatment of solid tumours.


Assuntos
Células-Tronco Hematopoéticas , Neoplasias , Animais , Diferenciação Celular , Humanos , Macrófagos , Camundongos , Neoplasias/metabolismo , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 114(36): 9659-9664, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827327

RESUMO

Factor V Leiden (F5L ) is a common genetic risk factor for venous thromboembolism in humans. We conducted a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for dominant thrombosuppressor genes based on perinatal lethal thrombosis in mice homozygous for F5L (F5L/L ) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/- ). F8 deficiency enhanced the survival of F5L/LTfpi+/- mice, demonstrating that F5L/LTfpi+/- lethality is genetically suppressible. ENU-mutagenized F5L/L males and F5L/+Tfpi+/- females were crossed to generate 6,729 progeny, with 98 F5L/LTfpi+/- offspring surviving until weaning. Sixteen lines, referred to as "modifier of Factor 5 Leiden (MF5L1-16)," exhibited transmission of a putative thrombosuppressor to subsequent generations. Linkage analysis in MF5L6 identified a chromosome 3 locus containing the tissue factor gene (F3). Although no ENU-induced F3 mutation was identified, haploinsufficiency for F3 (F3+/- ) suppressed F5L/LTfpi+/- lethality. Whole-exome sequencing in MF5L12 identified an Actr2 gene point mutation (p.R258G) as the sole candidate. Inheritance of this variant is associated with suppression of F5L/LTfpi+/- lethality (P = 1.7 × 10-6), suggesting that Actr2p.R258G is thrombosuppressive. CRISPR/Cas9 experiments to generate an independent Actr2 knockin/knockout demonstrated that Actr2 haploinsufficiency is lethal, supporting a hypomorphic or gain-of-function mechanism of action for Actr2p.R258G Our findings identify F8 and the Tfpi/F3 axis as key regulators in determining thrombosis balance in the setting of F5L and also suggest a role for Actr2 in this process.


Assuntos
Fator V/genética , Trombose/genética , Proteína 2 Relacionada a Actina/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Etilnitrosoureia , Fator VIII/genética , Feminino , Testes Genéticos , Haploinsuficiência , Homozigoto , Humanos , Lipoproteínas/deficiência , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Mutagênese , Gravidez , Fatores de Risco , Trombose/prevenção & controle , Sequenciamento do Exoma
4.
J Thromb Haemost ; 21(10): 2917-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364776

RESUMO

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES: We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS: We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS: We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION: Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.


Assuntos
Plaquetas , Inibidor 1 de Ativador de Plasminogênio , Animais , Camundongos , Plaquetas/metabolismo , Fibrinólise , Genômica , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Locos de Características Quantitativas , Humanos
5.
J Clin Invest ; 130(10): 5302-5312, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663190

RESUMO

Tissue factor (TF) is the primary initiator of blood coagulation in vivo and the only blood coagulation factor for which a human genetic defect has not been described. As there are no routine clinical assays that capture the contribution of endogenous TF to coagulation initiation, the extent to which reduced TF activity contributes to unexplained bleeding is unknown. Using whole genome sequencing, we identified a heterozygous frameshift variant (p.Ser117HisfsTer10) in F3, the gene encoding TF, causing premature termination of TF (TFshort) in a woman with unexplained bleeding. Routine hematological laboratory evaluation of the proposita was normal. CRISPR-edited human induced pluripotent stem cells recapitulating the variant were differentiated into vascular smooth muscle and endothelial cells that demonstrated haploinsufficiency of TF. The variant F3 transcript is eliminated by nonsense-mediated decay. Neither overexpression nor addition of exogenous recombinant TFshort inhibited factor Xa or thrombin generation, excluding a dominant-negative mechanism. F3+/- mice provide an animal model of TF haploinsufficiency and exhibited prolonged bleeding times, impaired thrombus formation, and reduced survival following major injury. Heterozygous TF deficiency is present in at least 1 in 25,000 individuals and could limit coagulation initiation in undiagnosed individuals with abnormal bleeding but a normal routine laboratory evaluation.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/sangue , Transtornos Herdados da Coagulação Sanguínea/genética , Mutação da Fase de Leitura , Tromboplastina/deficiência , Tromboplastina/genética , Animais , Sequência de Bases , Códon sem Sentido , Modelos Animais de Doenças , Feminino , Edição de Genes , Haploinsuficiência , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terminação Traducional da Cadeia Peptídica , Fenótipo
6.
Curr Protoc Mouse Biol ; 9(2): e61, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30875463

RESUMO

The mammalian blood coagulation system was designed to restrict blood loss due to injury as well as keep the blood fluid within the blood vessels of the organism. Blood coagulation activity in inbred mouse strains varies widely among strains, suggesting that many genomic variants affect hemostasis. Some of these molecules have been discovered and characterized; however, many are still unknown. Genetically modified mouse technologies are providing a plethora of new mouse models for investigating the regulation of blood coagulation. Here we provide a protocol for the tail bleeding time as a primary assessment of in vivo blood coagulation, as well as in vitro methods such as the prothrombin time, activated partial thromboplastin time, and thrombin generation assay. We also provide protocols for the assessment of the activities of specific known factors involved in blood coagulation. © 2019 by John Wiley & Sons, Inc.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Testes de Coagulação Sanguínea/métodos , Coagulação Sanguínea , Camundongos/sangue , Animais , Testes de Coagulação Sanguínea/instrumentação , Camundongos Endogâmicos , Cauda , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA