Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Gastroenterol Hepatol ; 21(11): 2746-2758, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36470528

RESUMO

BACKGROUND & AIMS: Growing evidence supports a role of gut-derived metabolites in nonalcoholic fatty liver disease (NAFLD), but the relation of endotoxin levels with gut permeability and NAFLD stage remains unclear. This systematic review with meta-analysis aims to provide further insights. METHODS: PubMed, Embase, and Cochrane Library were searched for studies published until January 2022 assessing blood endotoxins in patients with NAFLD. Meta-analyses and univariate/multivariate meta-regression, as well as correlation analyses, were performed for endotoxin values and potential relationships to disease stage, age, sex, parameters of systemic inflammation, and metabolic syndrome, as well as liver function and histology. RESULTS: Forty-three studies were included, of which 34 were used for meta-analyses. Blood endotoxin levels were higher in patients with simple steatosis vs liver-healthy controls (standardized mean difference, 0.86; 95% confidence interval, 0.62-1.11) as well as in patients with nonalcoholic steatohepatitis vs patients with nonalcoholic fatty liver/non-nonalcoholic steatohepatitis (standardized mean difference, 0.81; 95% confidence interval, 0.27-1.35; P = .0078). Consistently, higher endotoxin levels were observed in patients with more advanced histopathological gradings of liver steatosis and fibrosis. An increase of blood endotoxin levels was partially attributed to a body mass index rise in patients with NAFLD compared with controls. Nevertheless, significant increases of blood endotoxin levels in NAFLD retained after compensation for differences in body mass index, metabolic condition, or liver enzymes. Increases in blood endotoxin levels were associated with increases in C-reactive protein concentrations, and in most cases, paralleled a rise in markers for intestinal permeability. CONCLUSION: Our results support blood endotoxin levels as relevant diagnostic biomarker for NAFLD, both for disease detection as well as staging during disease progression, and might serve as surrogate marker of enhanced intestinal permeability in NAFLD. Registration number in Prospero: CRD42022311166.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Endotoxinas/metabolismo , Fígado/patologia , Inflamação/patologia , Biomarcadores/metabolismo
2.
Liver Int ; 42(5): 1185-1203, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35129269

RESUMO

BACKGROUND AND AIMS: Leukocyte infiltration is a hallmark of hepatic inflammation. The Junctional Adhesion Molecule A (JAM-A) is a crucial regulator of leukocyte extravasation and is upregulated in human viral fibrosis. Reduced shear stress within hepatic sinusoids and the specific phenotype of liver sinusoidal endothelial cells (LSEC) cumulate in differing adhesion characteristics during liver fibrosis. The aim of this study was to define the functional role of cell-specific adhesion molecule JAM-A during hepatic fibrogenesis. METHODS: Complete, conditional (intestinal epithelial; endothelial) and bone marrow chimeric Jam-a knockout animals and corresponding C57Bl/6 wild-type animals were treated with carbon tetrachloride (CCl4 , 6 weeks). For functional analyses of JAM-A, comprehensive in vivo studies, co-culture models and flow-based adhesion assays were performed. RESULTS: Complete and bone marrow-derived Jam-a-/- animals showed aggravated fibrosis with increased non-sinusoidal, perivascular accumulation of CD11b+ F4/80+ monocyte-derived macrophages in contrast to wild-type mice. Despite being associated with disturbed epithelial barrier function, an intestinal epithelial Jam-a knockout did not affect fibrogenesis. In endothelial-specific Jam-a-/- animals, liver fibrosis was aggravated alongside sinusoid capillarization and hepatic stellate cell (HSC) activation. HSC activation is induced via Jam-a-/- LSEC-derived secretion of soluble factors. Sinusoid CD31 expression and hedgehog gene signalling were increased, but leukocyte infiltration and adhesion to LSECs remained unaffected. CONCLUSIONS: Our models decipher cell-specific JAM-A to exert crucial functions during hepatic fibrogenesis. JAM-A on bone marrow-derived cells regulates non-sinusoidal vascular immune cell recruitment, while endothelial JAM-A controls liver sinusoid capillarization and HSC quiescence.


Assuntos
Molécula A de Adesão Juncional , Animais , Células Endoteliais/metabolismo , Fibrose , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Molécula A de Adesão Juncional/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897689

RESUMO

Hepatocellular carcinoma (HCC) constitutes a devastating health burden. Recently, tumor microenvironment-directed interventions have profoundly changed the landscape of HCC therapy. In the present study, the function of the chemokine CXCL10 during fibrosis-associated hepatocarcinogenesis was analyzed with specific focus on its impact in shaping the tumor microenvironment. C57BL/6J wild type (WT) and Cxcl10 knockout mice (Cxcl10-/-) were treated with diethylnitrosamine (DEN) and tetrachloromethane (CCl4) to induce fibrosis-associated HCCs. Cxcl10 deficiency attenuated hepatocarcinogenesis by decreasing tumor cell proliferation as well as tumor vascularization and modulated tumor-associated extracellular matrix composition. Furthermore, the genetic inactivation of Cxcl10 mediated an alteration of the tumor-associated immune response and modified chemokine/chemokine receptor networks. The DEN/CCl4-treated Cxcl10-/- mice presented with a pro-inflammatory tumor microenvironment and an accumulation of anti-tumoral immune cells in the tissue. The most striking alteration in the Cxcl10-/- tumor immune microenvironment was a vast accumulation of anti-tumoral T cells in the invasive tumor margin. In summary, our results demonstrate that CXCL10 exerts a non-redundant impact on several hallmarks of the tumor microenvironment and especially modulates the infiltration of anti-tumorigenic immune cells in HCC. In the era of microenvironment-targeted HCC therapies, interfering with CXCL10 defines a novel asset for further improvement of therapeutic strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Quimiocina CXCL10/genética , Fibrose , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
4.
J Neuroinflammation ; 17(1): 131, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32331524

RESUMO

BACKGROUND: An important hallmark of Alzheimer's disease (AD) is the increase of Aß1-42 burden and its accumulation to senile plaques, leading the reactive gliosis and neurodegeneration. The modulation of glia cell function represents an attractive therapeutic strategy, but is currently limited by an incomplete understanding of its relevance for AD. The chemotactic G-protein coupled formyl peptide receptor (FPR), which is known to modulate Aß1-42 uptake and signal transduction, might be one candidate molecule regulating glia function in AD. Here, we investigate whether the modulation of FPR exerts beneficial effects in an AD preclinical model. METHODS: To address this question, APP/PS1 double-transgenic AD mice were treated for 20 weeks with either the pro-inflammatory FPR agonist fMLF, the FPR1/2 antagonist Boc2 or the anti-inflammatory FPR2 agonist Ac2-26. Spatial learning and memory were evaluated using a Morris water maze test. Immunohistological staining, gene expression studies, and flow cytometry analyses were performed to study neuronal loss, gliosis, and Aß-load in the hippocampus and cortex, respectively. RESULTS: FPR antagonism by Boc2-treatment significantly improved spatial memory performance, reduced neuronal pathology, induced the expression of homeostatic growth factors, and ameliorated microglia, but not astrocyte, reactivity. Furthermore, the elevated levels of amyloid plaques in the hippocampus were reduced by Boc2-treatment, presumably by an induction of amyloid degradation. CONCLUSIONS: We suggest that the modulation of FPR signaling cascades might be considered as a promising therapeutic approach for alleviating the cognitive deficits associated with early AD. Additional studies are now needed to address the downstream effectors as well as the safety profile of Boc2.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/efeitos dos fármacos , Oligopeptídeos/farmacologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Transgênicos
5.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370326

RESUMO

Two polymorphisms in the promoter region of macrophage migration inhibitory factor (MIF) - rs755622 and rs5844572 - exhibit prognostic relevance in inflammatory diseases. The aim of this study was to investigate a correlation between these MIF promoter polymorphisms and the severity of hepatitis C virus (HCV)-induced liver fibrosis. Our analysis included two independent patient cohorts with HCV-induced liver fibrosis (504 and 443 patients, respectively). The genotype of the single nucleotide polymorphism (SNP) -173 G/C and the repeat number of the microsatellite polymorphism -794 CATT5-8 were determined in DNA samples and correlated with fibrosis severity. In the first cohort, homozygous carriers of the C allele in the rs755622 had lower fibrosis stages compared to heterozygous carriers or wild types (1.25 vs. 2.0 vs. 2.0; p = 0.03). Additionally, ≥7 microsatellite repeats were associated with lower fibrosis stages (

Assuntos
Carcinoma Hepatocelular/genética , Predisposição Genética para Doença , Hepatite C Crônica/genética , Oxirredutases Intramoleculares/genética , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Fatores Inibidores da Migração de Macrófagos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/virologia , Estudos de Coortes , Técnicas de Imagem por Elasticidade , Feminino , Expressão Gênica , Frequência do Gene , Hepacivirus/patogenicidade , Hepacivirus/fisiologia , Hepatite C Crônica/complicações , Hepatite C Crônica/diagnóstico por imagem , Hepatite C Crônica/virologia , Heterozigoto , Homozigoto , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/etiologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/virologia , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Polimorfismo Genético , Regiões Promotoras Genéticas , Índice de Gravidade de Doença
6.
Biomolecules ; 12(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35625625

RESUMO

Hepatic steatosis and chronic hepatocyte damage ultimately lead to liver fibrosis. Key pathophysiological steps are the activation and transdifferentiation of hepatic stellate cells. We assessed the interplay between hepatocytes and hepatic stellate cells under normal and steatotic conditions. We hypothesized that hepatocyte-derived extracellular vesicles (EVs) modify the phenotype of stellate cells. By high speed centrifugation, EVs were isolated from conditioned media of the hepatocellular carcinoma cell line HepG2 under baseline conditions (C-EVs) or after induction of steatosis by linoleic and oleic acids for 24 h (FA-EVs). Migration of the human stellate cell line TWNT4 and of primary human stellate cells towards the respective EVs and sera of MAFLD patients were investigated using Boyden chambers. Phenotype alterations after incubation with EVs were determined by qRT-PCR, Western blotting and immunofluorescence staining. HepG2 cells released more EVs after treatment with fatty acids. Chemotactic migration of TWNT4 and primary hepatic stellate cells was increased, specifically towards FA-EVs. Prolonged incubation of TWNT4 cells with FA-EVs induced expression of proliferation markers and a myofibroblast-like phenotype. Though the expression of the collagen type 1 α1 gene did not change after FA-EV treatment, expression of the myofibroblast markers, e.g., α-smooth-muscle-cell actin and TIMP1, was significantly increased. We conclude that EVs from steatotic hepatocytes can influence the behavior, phenotypes and expression levels of remodeling markers of stellate cells and guides their directed migration. These findings imply EVs as operational, intercellular communicators in the pathophysiology of steatosis-associated liver fibrosis and might represent a novel diagnostic parameter and therapeutic target.


Assuntos
Vesículas Extracelulares , Fígado Gorduroso , Linhagem Celular , Vesículas Extracelulares/metabolismo , Fígado Gorduroso/metabolismo , Fibrose , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/metabolismo
7.
Redox Biol ; 57: 102453, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209041

RESUMO

The Nrf2 signaling pathway prevents cancer initiation, but genetic mutations that activate this pathway are found in various types of cancer. The molecular mechanisms underlying this Janus-headed character are still not understood. Here, we show that sustained Nrf2 activation induces proliferation and dedifferentiation of a Wnt-responsive perivenular hepatic progenitor cell population, transforming them into metastatic cancer cells. The neoplastic lesions display many histological features known from human hepatoblastoma. We describe an Nrf2-induced upregulation of ß-catenin expression and its activation as the underlying mechanism for the observed malignant transformation. Thus, we have identified the Nrf2-ß-catenin axis promoting proliferation of hepatic stem cells and triggering tumorigenesis. These findings support the concept that different functional levels of Nrf2 control both the protection against various toxins as well as liver regeneration by activating hepatic stem cells. Activation of the hepatic stem cell compartment confers the observation that unbridled Nrf2 activation may trigger tumorigenesis.


Assuntos
Neoplasias Hepáticas , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Hepáticas/metabolismo , Proliferação de Células
8.
Br J Pharmacol ; 178(22): 4452-4467, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34250589

RESUMO

BACKGROUND AND PURPOSE: Macrophage migration inhibitory factor (MIF) is an inflammatory and chemokine-like protein expressed in different inflammatory diseases as well as solid tumours. CD74-as the cognate MIF receptor-was identified as an important target of MIF. We here analysed the role of MIF and CD74 in the progression of hepatocellular carcinoma (HCC) in vitro and in vivo. EXPERIMENTAL APPROACH: Multilocular HCC was induced using the diethylnitrosamine/carbon tetrachloride (DEN/CCl4 ) model in hepatocyte-specific Mif knockout (Mif Δhep ), Cd74-deficient, and control mice. Tumour burden was compared between the genotypes. MIF, CD74 and Ki67 expression were investigated in tumour and surrounding tissue. In vitro, the effects of the MIF/CD74 axis on the proliferative and apoptotic behaviour of hepatoma cells and respective signalling pathways were assessed after treatment with MIF and anti-CD74 antibodies. KEY RESULTS: DEN/CCl4 treatment of Mif Δhep mice resulted in reduced tumour burden and diminished proliferation capacity within tumour tissue. In vitro, MIF stimulated proliferation of Hepa 1-6 and HepG2 cells, inhibited therapy-induced cell death and induced ERK activation. The investigated effects could be reversed using a neutralizing anti-CD74 antibody, and Cd74-/- mice developed fewer tumours associated with decreased proliferation rates. CONCLUSION AND IMPLICATIONS: We identified a pro-tumorigenic role of MIF during proliferation and therapy-induced apoptosis of HCC cells. These effects were mediated via the MIF cognate receptor CD74. Thus, inhibition of the MIF/CD74 axis could represent a promising target with regard to new pharmacological therapies aimed at HCC.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Carcinoma Hepatocelular , Antígenos de Histocompatibilidade Classe II/genética , Neoplasias Hepáticas , Fatores Inibidores da Migração de Macrófagos , Animais , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Transdução de Sinais
9.
Cells ; 10(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525493

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with anti-fibrotic properties in toxic liver injury models and anti-steatotic functions in non-alcoholic fatty liver disease (NAFLD) attributed to the CD74/AMPK signaling pathway. As NAFLD progression is associated with fibrosis, we studied MIF function during NAFLD-associated liver fibrogenesis in mice and men by molecular, histological and immunological methods in vitro and in vivo. After NASH diet feeding, hepatic Mif expression was strongly induced, an effect which was absent in Mif∆hep mice. In contrast to hepatotoxic fibrosis models, NASH diet-induced fibrogenesis was significantly abrogated in Mif-/- and Mif∆hep mice associated with a reduced accumulation of the pro-fibrotic type-I NKT cell subpopulation. In vitro, MIF skewed the differentiation of NKT cells towards the type-I subtype. In line with the murine results, expression of fibrosis markers strongly correlated with MIF, its receptors, and markers of NKT type-I cells in NASH patients. We conclude that MIF expression is induced during chronic metabolic injury in mice and men with hepatocytes representing the major source. In NAFLD progression, MIF contributes to liver fibrogenesis skewing NKT cell polarization toward a pro-fibrotic phenotype highlighting the complex, context-dependent role of MIF during chronic liver injury.


Assuntos
Fatores Inibidores da Migração de Macrófagos/metabolismo , Células T Matadoras Naturais/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Biomarcadores/metabolismo , Polaridade Celular , Dieta , Progressão da Doença , Fibrose , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/genética , Receptores Imunológicos/metabolismo
10.
JHEP Rep ; 3(2): 100221, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33659891

RESUMO

BACKGROUND & AIMS: Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine and an important regulator of innate immune responses. We hypothesised that serum concentrations of MIF are associated with disease severity and outcome in patients with decompensated cirrhosis and acute-on-chronic liver failure (ACLF). METHODS: Circulating concentrations of MIF and its soluble receptor CD74 (sCD74) were determined in sera from 292 patients with acute decompensation of cirrhosis defined as new onset or worsening of ascites requiring hospitalisation. Of those, 78 (27%) had ACLF. Short-term mortality was assessed 90 days after inclusion. RESULTS: Although serum concentrations of MIF and sCD74 did not correlate with liver function parameters or ACLF, higher MIF (optimum cut-off >2.3 ng/ml) and lower concentrations of sCD74 (optimum cut-off <66.5 ng/ml) both indicated poorer 90-day transplant-free survival in univariate analyses (unadjusted hazard ratio [HR] 2.01 [1.26-3.22]; p = 0.004 for MIF; HR 0.59 [0.38-0.92]; p = 0.02 for sCD74) and after adjustment in multivariable models. Higher MIF concentrations correlated with surrogates of systemic inflammation (white blood cells, p = 0.005; C-reactive protein, p = 0.05) and were independent of genetic MIF promoter polymorphisms. Assessment of MIF plasma concentrations in portal venous blood and matched blood samples from the right atrium in a second cohort of patients undergoing transjugular intrahepatic portosystemic shunt insertion revealed a transhepatic MIF gradient with higher concentrations in the right atrial blood. CONCLUSIONS: Serum concentrations of MIF and its soluble receptor CD74 predict 90-day transplant-free survival in patients with acute decompensation of cirrhosis. This effect was independent of liver function and genetic predispositions, but rather reflected systemic inflammation. Therefore, MIF and sCD74 represent promising prognostic markers beyond classical scoring systems in patients at risk of ACLF. LAY SUMMARY: Inflammatory processes contribute to the increased risk of death in patients with cirrhosis and ascites. We show that patients with high serum levels of the inflammatory cytokine macrophage migration inhibitory factor (MIF) alongside low levels of its binding receptor sCD74 in blood indicate an increased mortality risk in patients with ascites. The cirrhotic liver is a relevant source of elevated circulating MIF levels.

11.
Int Rev Cell Mol Biol ; 348: 263-299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31810555

RESUMO

Hepatic dendritic cells represent a unique and multifaceted subset of antigen-presenting leukocytes that orchestrate specified immune responses in the liver. They are constantly exposed to antigens and signals derived not only from the hepatic microenvironment and the systemic circulation but also from the portal vein draining the gut and conveying food antigens as well as microbial compounds. Modulated by these various factors they shape intrahepatic immune responses during acute and chronic liver diseases, hepatocellular carcinoma and allograft tolerance as well as systemic responses to gut-derived components. Hence, hepatic DC are central targets to decipher and fine-tune innate and adaptive hepatic immune responses as well as tolerance. This review focuses on the origin of hepatic DC, the different DC subsets present in the liver and their functionality during different acute and chronic liver diseases in mice and men and will discuss potential DC directed therapeutic interventions in liver disease.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Saúde , Hepatopatias/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Doença Crônica , Células Dendríticas/patologia , Humanos , Hepatopatias/imunologia , Hepatopatias/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia
12.
Front Physiol ; 10: 326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971954

RESUMO

Platelet factor 4 (PF4) is a pleiotropic inflammatory chemokine, which has been implicated in various inflammatory disorders including liver fibrosis. However, its role in acute liver diseases has not yet been elucidated. Here we describe an unexpected, anti-inflammatory role of PF4. Serum concentrations of PF4 were measured in patients and mice with acute liver diseases. Acute liver injury in mice was induced either by carbon tetrachloride or by D-galactosamine hydrochloride and lipopolysaccharide. Serum levels of PF4 were decreased in patients and mice with acute liver diseases. PF4-/- mice displayed increased liver damage in both models compared to control which was associated with increased apoptosis of hepatocytes and an enhanced pro-inflammatory response of liver macrophages. In this experimental setting, PF4-/- mice were unable to generate activated Protein C (APC), a protein with anti-inflammatory activities on monocytes/macrophages. In vitro, PF4 limited the activation of liver resident macrophages. Hence, the systemic application of PF4 led to a strong amelioration of experimental liver injury. Along with reduced liver injury, PF4 improved the severity of the pro-inflammatory response of liver macrophages and induced increased levels of APC. PF4 has a yet unidentified direct anti-inflammatory effect in two models of acute liver injury. Thus, attenuation of acute liver injury by systemic administration of PF4 might offer a novel therapeutic approach for acute liver diseases.

13.
J Exp Med ; 215(1): 319-336, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29263218

RESUMO

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with constitutively activated mitogen-activated protein kinase (MAPK) pathway signaling. Approximately 60% of LCH patients harbor somatic BRAFV600E mutations localizing to CD207+ DCs within lesions. However, the mechanisms driving BRAFV600E+ LCH cell accumulation in lesions remain unknown. Here we show that sustained extracellular signal-related kinase activity induced by BRAFV600E inhibits C-C motif chemokine receptor 7 (CCR7)-mediated DC migration, trapping DCs in tissue lesions. Additionally, BRAFV600E increases expression of BCL2-like protein 1 (BCL2L1) in DCs, resulting in resistance to apoptosis. Pharmacological MAPK inhibition restores migration and apoptosis potential in a mouse LCH model, as well as in primary human LCH cells. We also demonstrate that MEK inhibitor-loaded nanoparticles have the capacity to concentrate drug delivery to phagocytic cells, significantly reducing off-target toxicity. Collectively, our results indicate that MAPK tightly suppresses DC migration and augments DC survival, rendering DCs in LCH lesions trapped and resistant to cell death.


Assuntos
Movimento Celular/fisiologia , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Histiocitose de Células de Langerhans/metabolismo , Células de Langerhans/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Apoptose/fisiologia , Histiocitose de Células de Langerhans/patologia , Humanos , Células de Langerhans/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Fagocitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA