Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 601(7891): 74-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912113

RESUMO

Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Intoxicação por Mercúrio/veterinária , Mercúrio/análise , Animais , Isótopos/análise , Fatores de Tempo
2.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856174

RESUMO

Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.


Assuntos
Metabolismo Energético , Plumas , Compostos de Metilmercúrio , Muda , Estresse Fisiológico , Animais , Plumas/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Muda/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Pardais/fisiologia , Metabolismo Basal/efeitos dos fármacos , Masculino , Estações do Ano , Feminino
3.
Ecotoxicol Environ Saf ; 280: 116573, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870737

RESUMO

Boreal peatlands are "hotspots" of net methylmercury (MeHg) production and may become drier in the future due to climate change. This study investigates a critical gap by analyzing the nuanced relationship between soil moisture content and the release of MeHg, inorganic mercury (IHg), sulfate (SO42-), and dissolved organic matter (DOM) in a laboratory incubation of boreal peat soils. Dried peat soils exhibited heightened releases of IHg, MeHg, and SO42- during re-wetting events. Both dried and saturated peat soils released more DOM than moist peat soils during re-wetting events, and DOM released from dried soils had higher bioaccessibility than that from the saturated soils (p<0.05). There was an equilibrium of IHg concentrations between peat soils and pore waters, but long-term severe drought may disrupt this equilibrium and then release more IHg to pore waters during re-wetting events. Contrary to expectations, positive relationships between IHg concentrations and SUVA254 did not exist in all treatments. MeHg and SO42- were depleted quickly because there was no external input of Hg and SO42- to this static system. More bioaccessible DOM than aromatic DOM was released from peat soils with different soil moisture contents after 32 weeks during the re-wetting event (p<0.05). These results imply that re-wetting of peat soils after droughts can increase the release of MeHg from peat soils and may also increase net MeHg production due to the release of SO42- and bioaccessible DOM from peat soils, reshaping our understanding of soil moisture's role in mercury dynamics. This novel insight into soil moisture and MeHg dynamics carries significant implications for mitigating mercury contamination in aquatic ecosystems.


Assuntos
Monitoramento Ambiental , Mercúrio , Compostos de Metilmercúrio , Poluentes do Solo , Solo , Compostos de Metilmercúrio/análise , Solo/química , Mercúrio/análise , Poluentes do Solo/análise , Água/química , Mudança Climática , Poluentes Químicos da Água/análise
4.
Environ Res ; 217: 114835, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400218

RESUMO

Biomagnification of mercury (Hg) through lake food webs is understudied in rapidly changing northern regions, where wild-caught subsistence fish are critical to food security. We investigated estimates and among-lake variability of Hg biomagnification rates (BMR), relationships between Hg BMR and Hg levels in subsistence fish, and environmental drivers of Hg BMR in ten remote subarctic lakes in Northwest Territories, Canada. Lake-specific linear regressions between Hg concentrations (total Hg ([THg]) in fish and methyl Hg ([MeHg]) in primary consumers) and baseline-adjusted δ15N ratios were significant (p < 0.001, r2 = 0.58-0.88), indicating biomagnification of Hg through food webs of all studied lakes. Quantified using the slope of Hg-δ15N regressions, Hg BMR ranged from 0.16 to 0.25, with mean ± standard deviation of 0.20 ± 0.03). Using fish [MeHg] rather than [THg] lowered estimates of Hg BMR by ∼10%, suggesting that the use of [THg] as a proxy for [MeHg] in fish can influence estimates of Hg BMR. Among-lake variability of size-standardized [THg] in resident fish species from different trophic guilds, namely Lake Whitefish (Coregonus clupeaformis) and Northern Pike (Esox lucius), was not significantly explained by among-lake variability in Hg BMR. Stepwise multiple regressions indicated that among-lake variability of Hg BMR was best explained by a positive relationship with catchment forest cover (p = 0.009, r2 = 0.59), likely reflecting effects of forest cover on water chemistry of downstream lakes and ultimately, concentrations of biomagnifying MeHg (and percent MeHg of total Hg) in resident biota. These findings improve our understanding of Hg biomagnification in remote subarctic lakes.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Cadeia Alimentar , Bioacumulação , Canadá , Monitoramento Ambiental , Peixes , Poluentes Químicos da Água/análise
5.
Ecotoxicology ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966666

RESUMO

Dietary uptake is key for transferring potentially toxic contaminants, such as mercury (Hg) and essential dietary nutrients, such as polyunsaturated fatty acids (PUFA), to consumers at higher trophic levels of aquatic food webs. We evaluated the role of diet sources for Hg bioaccumulation and PUFA retention in fish across lake food webs in seven Swedish lakes and two Chinese reservoirs. Fish total Hg (THg) and methyl-Hg (MeHg) differed greatly between the two countries: the Chinese fish contained less than 300 ng g-1 dry weight (d.w.) THg with less than 50% as MeHg, versus the Swedish fishes which contained approximately 2000 ng g-1 d.w. THg and nearly 100% as MeHg. Fatty acids enrichment of linoleic acids (LIN) were more prevalent in the Chinese fishes regardless of size (p < 0.05). Here we examined food web length, fish growth rates, and fatty acids patterns in relation to the quality of fish as a food source for both Hg and FA. Contrary to the expectation that biodilution of Hg throughout the food chain would explain these differences, a more complex picture emerged with high levels of Hg at the base of the food web in the Chinese reservoirs, a decoupling of fatty acid and Hg bioaccumulation, and a major role for both fish stocking and fish feed. It is hoped that this work will provide a nuanced picture of fish quality as a food source in different ecosystems.

6.
Horm Behav ; 146: 105261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126358

RESUMO

Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.


Assuntos
Compostos de Metilmercúrio , Pardais , Animais , Corticosterona , Estações do Ano
7.
Environ Sci Technol ; 56(24): 17615-17625, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445185

RESUMO

Changes in sulfate (SO42-) deposition have been linked to changes in mercury (Hg) methylation in peatlands and water quality in freshwater catchments. There is little empirical evidence, however, of how quickly methyl-Hg (MeHg, a bioaccumulative neurotoxin) export from catchments might change with declining SO42- deposition. Here, we present responses in total Hg (THg), MeHg, total organic carbon, pH, and SO42- export from a peatland-dominated catchment as a function of changing SO42- deposition in a long-term (1998-2011), whole-ecosystem, control-impact experiment. Annual SO42- deposition to half of a 2-ha peatland was experimentally increased 6-fold over natural levels and then returned to ambient levels in two phases. Sulfate additions led to a 5-fold increase in monthly flow-weighted MeHg concentrations and yields relative to a reference catchment. Once SO42- additions ceased, MeHg concentrations in the outflow streamwater returned to pre-SO42- addition levels within 2 years. The decline in streamwater MeHg was proportional to the change in the peatland area no longer receiving experimental SO42- inputs. Importantly, net demethylation and increased sorption to peat hastened the return of MeHg to baseline levels beyond purely hydrological flushing. Overall, we present clear empirical evidence of rapid and proportionate declines in MeHg export from a peatland-dominated catchment when SO42- deposition declines.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Ecossistema , Sulfatos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Mercúrio/análise , Óxidos de Enxofre
8.
Ecotoxicol Environ Saf ; 220: 112354, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116335

RESUMO

Hydropower generation, a renewable source of electricity, has been linked to elevated methylmercury (MeHg) concentrations in impoundments and aquatic biota. This study investigates the impact of water level fluctuations (WLF) on MeHg concentrations in water, sediment, and fish. Using a set of controlled microcosm experiments emulating the drawdown/refill dynamics and subsequent sediment exposure to air experienced in reservoirs, we demonstrate that less frequent WLFs, and/or increased exposure of sediment to air, can lead to elevated MeHg concentrations in sediment, and total mercury (THg) and MeHg concentrations in water. In examining the effects of WLF frequency (two-day, weekly, and monthly), the monthly treatment displayed the highest THg and MeHg water levels, while the weekly treatment was characterized by the highest MeHg levels in the sediment. Our work supports emerging evidence that longer duration between WLF creates a larger surface area of sediment exposed to air leading to conditions conducive to higher MeHg concentrations in sediments and water. In contrast, THg, MeHg, and fatty acid trends in fish were largely inconclusive characterized by similar among-treatment effects and minimal temporal variability over the course of our experiment. This result could partly be attributed to overall low mercury levels and simple "worm-forage fish" food web in our experiment. To elucidate the broader impacts of water fluctuations on aquatic chemistry and biota, other factors (e.g., longer WLF cycles, dissolved organic matter, temperature, more complex food webs) which modulate both methylation rates and food web dynamics must be considered.


Assuntos
Mercúrio/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Peixes/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Água/química
9.
Ecotoxicology ; 29(10): 1614-1626, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31925621

RESUMO

Mercury (Hg) concentrations and speciation were measured in nine tributaries to Lake Ontario as part of two independent field-sampling programs. Among the study tributaries, mean total Hg (THg) concentrations ranged from 0.9 to 2.6 ng/L; mean dissolved Hg (THgD) ranged from 0.5 to 1.5 ng/L; mean particulate Hg (THgP) ranged from 0.3 to 2.0 ng/L; and mean methylmercury (MeHg) ranged from 0.06 to 0.14 ng/L. Watershed land cover, total suspended solids (TSS), and dissolved organic carbon (DOC) were evaluated as potential controls of tributary Hg. Significant relationships between THgD and DOC were limited, whereas significant relationships between THgP and TSS were common across watersheds. Total suspended solids was strongly correlated with the percentage of agricultural land in watersheds. Particle enrichment of Hg (mass Hg/mass TSS) was highly variable, but distinctly higher in US tributaries likely due to higher TSS in Canadian tributaries associated with higher urban and agricultural land cover. MeHg was largely associated with the aqueous phase, and MeHg as a fraction of THg was positively correlated to percent open water coverage in the watershed. Wetland cover was positively correlated to THg and MeHg concentrations, while urban land cover was only related to higher THgP.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Agricultura , Lagos/química , Compostos de Metilmercúrio , Ontário , Rios , Estações do Ano , Áreas Alagadas
10.
J Environ Sci (China) ; 80: 137-145, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952331

RESUMO

The use of biopsy plugs to sample fish muscle tissue for mercury analyses is a viable alternative to lethal sampling; however, the practice has yet to be widely implemented in routine monitoring due to concerns about variability of mercury concentrations in fish muscle tissues. Here we examine distribution of mercury in fillets of four fish species (Walleye, Northern Pike, Smallmouth Bass and Lake Trout), suitability of left/right side of fillet for biopsy sampling, and appropriateness of re-using a biopsy punch. The results showed that average mercury concentrations in left and right fillets of fish are similar. Mercury concentrations in biopsy plug samples, taken from the anterior dorsal area of the fish fillet, were statistically equivalent to the mercury concentrations in homogenized fillets. There was no discernible cross contamination between samples when a biopsy punch was reused after washing in hot soapy water, and as such, biopsy punches can be recycled during sampling to reduce the sampling cost. If a tissue mass collected from a specific site on the fillet is insufficient, then we suggest sampling corresponding locations on the other fillet rather than sampling two adjacent sites on one fillet to obtain more tissue. The results presented here can improve the accuracy of fillet biopsy plug sampling, minimize fish mortality for mercury monitoring, and reduce labor and material costs in monitoring programs.


Assuntos
Monitoramento Ambiental/métodos , Peixes , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Biópsia , Músculos
11.
Environ Sci Technol ; 52(6): 3344-3353, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29444573

RESUMO

Dissolved organic matter (DOM) includes an array of carbon-based compounds that vary in size and structure and have complex interactions with mercury (Hg) cycling in aquatic systems. While many studies have examined the relationship between dissolved organic carbon concentrations ([DOC]) and methyl Hg bioaccumulation, few studies have considered the effects of DOM composition (e.g., protein-content, aromaticity). The goal of this study was to explore the relationships between total and methyl [Hg] in water, invertebrates, and fish and optically derived measures of DOM composition from 47 lake and river sites across a boreal watershed. Results showed higher aqueous total [Hg] in systems with more aromatic DOM and higher [DOC], potentially due to enhanced transport from upstream or riparian areas. Methyl [Hg] in biota were all positively related to the amount of microbial-based DOM and, in some cases, to the proportions of labile and protein-like DOM. These results suggest that increased Hg bioaccumulation is related to the availability of labile DOM, potentially due to enhanced Hg methylation. DOM composition explained 68% and 54% more variability in [Hg] in surface waters and large-bodied fish, respectively, than [DOC] alone. These results show that optical measures of DOM characteristics are a valuable tool for understanding DOM-Hg biogeochemistry.


Assuntos
Mercúrio , Biota , Lagos , Compostos Orgânicos , Rios
12.
Proc Biol Sci ; 282(1805)2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25788594

RESUMO

Mercury (Hg) is increasing in marine food webs, especially at high latitudes. The bioaccumulation and biomagnification of methyl mercury (MeHg) has serious effects on wildlife, and is most evident in apex predators. The MeHg body burden in birds is the balance of ingestion and excretion, and MeHg in feathers is an effective indicator of overall MeHg burden. Ivory gulls (Pagophila eburnea), which consume ice-associated prey and scavenge marine mammal carcasses, have the highest egg Hg concentrations of any Arctic bird, and the species has declined by more than 80% since the 1980s in Canada. We used feathers from museum specimens from the Canadian Arctic and western Greenland to assess whether exposure to MeHg by ivory gulls increased from 1877 to 2007. Based on constant feather stable-isotope (δ(13)C, δ(15)N) values, there was no significant change in ivory gulls' diet over this period, but feather MeHg concentrations increased 45× (from 0.09 to 4.11 µg g(-1) in adults). This dramatic change in the absence of a dietary shift is clear evidence of the impact of anthropogenic Hg on this high-latitude threatened species. Bioavailable Hg is expected to increase in the Arctic, raising concern for continued population declines in high-latitude species that are far from sources of environmental contaminants.


Assuntos
Charadriiformes/metabolismo , Exposição Ambiental , Plumas/química , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Regiões Árticas , Canadá , Isótopos de Carbono/análise , Dieta , Espécies em Perigo de Extinção , Monitoramento Ambiental , Feminino , Groenlândia , Masculino , Isótopos de Nitrogênio/análise , Estações do Ano , Fatores de Tempo
13.
Glob Chang Biol ; 21(1): 388-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24957384

RESUMO

The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Modelos Biológicos , Sphagnopsida/fisiologia , Análise de Variância , Dióxido de Carbono/metabolismo , Água Subterrânea , Concentração de Íons de Hidrogênio , Especificidade da Espécie , Temperatura
14.
Environ Sci Technol ; 49(18): 11019-27, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26287735

RESUMO

Both mercury (Hg) and polychlorinated biphenyls (PCBs) demonstrate food web biomagnification in aquatic ecosystems, yet their toxicokinetics have not been simultaneously contrasted within a common fish species. This study quantifies uptake and elimination rates of Hg and PCBs in goldfish. Fish were exposed to contaminated food containing PCBs and Hg to determine dietary chemical assimilation efficiencies (AEs) and elimination coefficients (ktot). To test first-order kinetics, three exposure regimes were established by varying the proportion of contaminated fish incorporated into the food. Dietary AEs were 98 ± 10, 75 ± 12, and 40 ± 9% for MeHg, THg, and PCBs, respectively. The ktot values were 0.010 ± 0.003 and 0.010 ± 0.002 day(-1) for THg and MeHg, respectively. No significant differences were found in ktot among the dosing levels for either THg or MeHg, confirming that Hg elimination is a first-order process. For PCB, ktot ranged from 0.007 to 0.022 day(-1) and decreased with an increase in hydrophobicity. This study revealed that Hg had an AE higher than that of PCBs, while the ktot of Hg was similar to those measured for the most hydrophobic PCBs. We conclude that Hg has a bioaccumulation potential in goldfish 118% higher than the highest PCB BMF observed for congeners with a log KOW of >7.


Assuntos
Carpa Dourada/metabolismo , Mercúrio/farmacocinética , Bifenilos Policlorados/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Ecossistema , Ecotoxicologia/métodos , Cadeia Alimentar , Interações Hidrofóbicas e Hidrofílicas , Mercúrio/análise , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/farmacocinética , Bifenilos Policlorados/análise , Toxicocinética , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 48(2): 1023-31, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24383823

RESUMO

The fate of mercury (Hg) deposited on forested upland soils depends on a wide array of biogeochemical and hydrological processes occurring in the soil landscape. In this study, Hg in soil, soilwater, and streamwater were measured across a forested upland subcatchment of the METAALICUS watershed in northwestern Ontario, Canada, where a stable Hg isotope (spike Hg) was applied to distinguish newly deposited Hg from Hg already resident in the watershed (ambient Hg). In total, we were able to account for 45% of the total mass of spike Hg applied to the subcatchment during the entire loading phase of the experiment, with approximately 22% of the total mass applied now residing in the top 15 cm of the mineral soil layer. Decreasing spike Hg/ambient Hg ratios with depth in the soil and soilwater suggest that spike Hg is less mobile than ambient Hg over shorter time scales. However, the transport of spike Hg into the mineral soil layer is enhanced in depressional areas where water table fluctuation is more extreme. While we expect that this pool of Hg is now effectively sequestered in the mineral horizon, future disturbance of the soil profile could remobilize this stored Hg in runoff.


Assuntos
Ecossistema , Mercúrio/análise , Poluentes do Solo/análise , Solo/química , Abastecimento de Água , Carbono/análise , Isótopos de Mercúrio/análise , Ontário , Rios/química
16.
Environ Sci Technol ; 48(11): 6107-14, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24783951

RESUMO

Watershed mercury (Hg) flux was calculated for ten inflowing rivers and the outlet for Lake Ontario using empirical measurements from two independent field-sampling programs. Total Hg (THg) flux for nine study watersheds that directly drain into the lake ranged from 0.2 kg/yr to 13 kg/yr, with the dominant fluvial THg load from the Niagara River at 154 kg/yr. THg loss at the outlet (St. Lawrence River) was 68 kg/yr and has declined approximately 40% over the past decade. Fluvial Hg inputs largely (62%) occur in the dissolved fraction and are similar to estimates of atmospheric Hg inputs. Fluvial mass balances suggest strong in-lake retention of particulate Hg inputs (99%), compared to dissolved total Hg (45%) and methyl Hg (22%) fractions. Wetland land cover is a good predictor of methyl Hg yield for Lake Ontario watersheds. Sediment deposition studies, coupled atmospheric and fluvial Hg fluxes, and a comparison of this work with previous measurements indicate that Lake Ontario is a net sink of Hg inputs and not at steady state likely because of recent decreases in point source inputs and atmospheric Hg deposition.


Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Mercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Lagos/análise , Ontário , Áreas Alagadas
17.
Environ Sci Technol ; 47(15): 8273-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23822884

RESUMO

Peatlands are an important source of the atmospheric greenhouse gas methane (CH4). Although CH4 cycling and fluxes have been quantified for many northern peatlands, imprecision in process-based approaches to predicting CH4 emissions suggests that our understanding of underlying processes is incomplete. Microbial anaerobic oxidation of CH4 (AOM) is an important CH4 sink in marine sediments, but AOM has only recently been identified in a few nonmarine systems. We used (13)C isotope tracers and followed the fate of (13)C into CO2 and peat in order to study the geographic extent, relative importance, and biogeochemistry of AOM in 15 North American peatlands spanning a ∼1500 km latitudinal transect that varied in hydrology, vegetation, and soil chemistry. For the first time, we demonstrate that AOM is a widespread and quantitatively important process across many peatland types and that anabolic microbial assimilation of CH4-C occurs. However, AOM rate is not predicted by CH4 production rates and the primary mechanism of C assimilation remains uncertain. AOM rates are higher in fen than bog sites, suggesting electron acceptor constraints on AOM. Nevertheless, AOM rates were not correlated with porewater ion concentrations or stimulated following additions of nitrate, sulfate, or ferric iron, suggesting that an unidentified electron acceptor(s) must drive AOM in peatlands. Globally, we estimate that AOM could consume a large proportion of CH4 produced annually (1.6-49 Tg) and thereby constrain emissions and greenhouse gas forcing.


Assuntos
Isótopos/metabolismo , Metano/metabolismo , Anaerobiose , Oxirredução
18.
Environ Sci Technol ; 46(12): 6663-71, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22578022

RESUMO

Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (Hg(T)) present as MeHg) in the porewaters of the experimental treatment reached peak values within a week of sulfate addition and then declined as the added sulfate disappeared. MeHg increased cumulatively over time in the solid-phase peat, which acted as a sink for newly produced MeHg. In 2006 a "recovery" treatment was created by discontinuing sulfate addition to a portion of the experimentally treated section to assess how MeHg production might respond to decreased sulfate loads. Four years after sulfate additions ceased, MeHg concentrations and %MeHg had declined significantly from 2006 values in porewaters and peat, but remained elevated relative to control levels. Mosquito larvae collected from each treatment at the end of the experiment exhibited Hg(T) concentrations reflective of MeHg levels in the peat and porewaters where they were collected. The proportional responses of invertebrate Hg(T) to sulfate deposition rates demonstrate that further controls on sulfur emissions may represent an additional means of mitigating Hg contamination in fish and wildlife across low-sulfur landscapes.


Assuntos
Compostos de Metilmercúrio/análise , Sulfitos/análise , Áreas Alagadas
19.
Sci Total Environ ; 822: 153430, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35090925

RESUMO

Mercury concentrations ([Hg]) in fish reflect complex biogeochemical and ecological interactions that occur at a range of spatial and biological scales. Elucidating these interactions is crucial to understanding and predicting fish [Hg], particularly at northern latitudes, where environmental perturbations are having profound effects on land-water-animal interactions, and where fish are a critical subsistence food source. Using data from eleven subarctic lakes that span an area of ~60,000 km2 in the Dehcho Region of Northwest Territories (Canada), we investigated how trophic ecology and growth rates of fish, lake water chemistry, and catchment characteristics interact to affect [Hg] in Northern Pike (Esox lucius), a predatory fish of widespread subsistence and commercial importance. Results from linear regression and piecewise structural equation models showed that 83% of among-lake variability in Northern Pike [Hg] was explained by fish growth rates (negative) and concentrations of methyl Hg ([MeHg]) in benthic invertebrates (positive). These variables were in turn influenced by concentrations of dissolved organic carbon, MeHg (water), and total Hg (sediment) in lakes, which were ultimately driven by catchment characteristics. Lakes in relatively larger catchments and with more temperate/subpolar needleleaf and mixed forests had higher [Hg] in Northern Pike. Our results provide a plausible mechanistic understanding of how interacting processes at scales ranging from whole catchments to individual organisms influence fish [Hg], and give insight into factors that could be considered for prioritizing lakes for monitoring in subarctic regions.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Esocidae , Peixes , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 775: 145739, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33621875

RESUMO

Methylmercury (MeHg) is a globally distributed pollutant that can negatively affect wildlife. Bird feathers are often used as a monitoring tool of contaminant exposure, but variability in total mercury (THg) content in flight feathers has raised concerns over their utility. The objective of this study was to quantify blood and feather THg depuration through the progression of primary feather molt in order to clarify the relationship between blood and feather mercury concentration, and test the reliability of feather THg measurements as a monitoring tool in wild songbirds. Song sparrows (Melospiza melodia) were experimentally exposed to dietary MeHg and their blood and primary feather THg concentrations were measured during exposure and post-exposure periods of three months each. A rapid decrease in feather and blood THg concentration through molt progression was observed. Primary feather THg content was higher in feathers grown during the MeHg exposure period compared to those grown during the post-exposure period. Primary feather THg concentration was highly correlated with blood THg measured at the time of feather growth (R = 0.98), indicating that, although THg concentration is variable among flight feathers, this reflects temporally sequential molting patterns and declining blood concentration during depuration. Primary flight feathers thus provide an accurate and useful tool for estimating the mercury burden of birds at the time a chosen feather was grown, and have the potential to be an effective and reliable biomonitoring tool for species with well-characterized molt patterns.


Assuntos
Mercúrio , Aves Canoras , Animais , Monitoramento Ambiental , Plumas/química , Mercúrio/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA