Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 142(6): 819-834, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086329

RESUMO

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.


Assuntos
Surdez , Perda Auditiva , Humanos , Proteoma/genética , Perda Auditiva/genética , Mutação de Sentido Incorreto , Surdez/genética
2.
Clin Genet ; 101(3): 346-358, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964109

RESUMO

Recessive mutations in the genes encoding the four subunits of the tRNA splicing endonuclease complex (TSEN54, TSEN34, TSEN15, and TSEN2) cause various forms of pontocerebellar hypoplasia, a disorder characterized by hypoplasia of the cerebellum and the pons, microcephaly, dysmorphisms, and other variable clinical features. Here, we report an intronic recessive founder variant in the gene TSEN2 that results in abnormal splicing of the mRNA of this gene, in six individuals from four consanguineous families affected with microcephaly, multiple craniofacial malformations, radiological abnormalities of the central nervous system, and cognitive retardation of variable severity. Remarkably, unlike patients with previously described mutations in the components of the TSEN complex, all the individuals that we report developed atypical hemolytic uremic syndrome (aHUS) with thrombotic microangiopathy, microangiopathic hemolytic anemia, thrombocytopenia, proteinuria, severe hypertension, and end-stage kidney disease (ESKD) early in life. Bulk RNA sequencing of peripheral blood cells of four affected individuals revealed abnormal tRNA transcripts, indicating an alteration of the tRNA biogenesis. Morpholino-mediated skipping of exon 10 of tsen2 in zebrafish produced phenotypes similar to human patients. Thus, we have identified a novel syndrome accompanied by aHUS suggesting the existence of a link between tRNA biology and vascular endothelium homeostasis, which we propose to name with the acronym TRACK syndrome (TSEN2 Related Atypical hemolytic uremic syndrome, Craniofacial malformations, Kidney failure).


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Microcefalia , Animais , Síndrome Hemolítico-Urêmica Atípica/genética , Endonucleases/genética , Feminino , Humanos , Masculino , Microcefalia/complicações , Mutação/genética , RNA de Transferência , Peixe-Zebra/genética
3.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32382995

RESUMO

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Perda Auditiva Neurossensorial/genética , Canais de Potássio KCNQ/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Audiometria , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudos de Associação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Estados Unidos , População Branca
4.
Biophys J ; 117(3): 602-612, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31327459

RESUMO

Hearing loss is associated with ∼8100 mutations in 152 genes, and within the coding regions of these genes are over 60,000 missense variants. The majority of these variants are classified as "variants of uncertain significance" to reflect our inability to ascribe a phenotypic effect to the observed amino acid change. A promising source of pathogenicity information is biophysical simulation, although input protein structures often contain defects because of limitations in experimental data and/or only distant homology to a template. Here, we combine the polarizable atomic multipole optimized energetics for biomolecular applications force field, many-body optimization theory, and graphical processing unit acceleration to repack all deafness-associated proteins and thereby improve average structure MolProbity score from 2.2 to 1.0. We then used these optimized wild-type models to create over 60,000 structures for missense variants in the Deafness Variation Database, which are being incorporated into the Deafness Variation Database to inform deafness pathogenicity prediction. Finally, this work demonstrates that advanced polarizable atomic multipole force fields are efficient enough to repack the entire human proteome.


Assuntos
Algoritmos , Perda Auditiva/genética , Proteínas/química , Fenômenos Biofísicos , Bases de Dados de Proteínas , Humanos , Modelos Moleculares
5.
BMC Bioinformatics ; 20(1): 339, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208324

RESUMO

BACKGROUND: In the era of precision oncology and publicly available datasets, the amount of information available for each patient case has dramatically increased. From clinical variables and PET-CT radiomics measures to DNA-variant and RNA expression profiles, such a wide variety of data presents a multitude of challenges. Large clinical datasets are subject to sparsely and/or inconsistently populated fields. Corresponding sequencing profiles can suffer from the problem of high-dimensionality, where making useful inferences can be difficult without correspondingly large numbers of instances. In this paper we report a novel deployment of machine learning techniques to handle data sparsity and high dimensionality, while evaluating potential biomarkers in the form of unsupervised transformations of RNA data. We apply preprocessing, MICE imputation, and sparse principal component analysis (SPCA) to improve the usability of more than 500 patient cases from the TCGA-HNSC dataset for enhancing future oncological decision support for Head and Neck Squamous Cell Carcinoma (HNSCC). RESULTS: Imputation was shown to improve prognostic ability of sparse clinical treatment variables. SPCA transformation of RNA expression variables reduced runtime for RNA-based models, though changes to classifier performance were not significant. Gene ontology enrichment analysis of gene sets associated with individual sparse principal components (SPCs) are also reported, showing that both high- and low-importance SPCs were associated with cell death pathways, though the high-importance gene sets were found to be associated with a wider variety of cancer-related biological processes. CONCLUSIONS: MICE imputation allowed us to impute missing values for clinically informative features, improving their overall importance for predicting two-year recurrence-free survival by incorporating variance from other clinical variables. Dimensionality reduction of RNA expression profiles via SPCA reduced both computation cost and model training/evaluation time without affecting classifier performance, allowing researchers to obtain experimental results much more quickly. SPCA simultaneously provided a convenient avenue for consideration of biological context via gene ontology enrichment analysis.


Assuntos
Bases de Dados Genéticas , Aprendizado de Máquina , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Algoritmos , Área Sob a Curva , Ontologia Genética , Humanos , Análise de Componente Principal , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
6.
Am J Hum Genet ; 95(4): 445-53, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25262649

RESUMO

Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.


Assuntos
Etnicidade/genética , Evolução Molecular , Exoma/genética , Variação Genética/genética , Perda Auditiva/genética , Perda Auditiva/patologia , Estudos de Casos e Controles , Conexina 26 , Conexinas , Frequência do Gene , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Filogenia
7.
Ophthalmology ; 124(9): 1314-1331, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28559085

RESUMO

PURPOSE: To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician. DESIGN: Retrospective series. PARTICIPANTS: One thousand consecutive families seen by a single clinician. METHODS: The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000. MAIN OUTCOME MEASURES: Sensitivity and false genotype rate. RESULTS: Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001). CONCLUSIONS: Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.


Assuntos
Oftalmopatias Hereditárias/genética , Proteínas do Olho/genética , Mutação , Doenças Retinianas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Análise Mutacional de DNA , Exoma/genética , Saúde da Família , Feminino , Testes Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Estudos Retrospectivos , Sensibilidade e Especificidade , Análise de Sequência de DNA , Estados Unidos
8.
Hum Mutat ; 36(1): 43-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363634

RESUMO

Variants in ABCA4 are responsible for autosomal-recessive Stargardt disease and cone-rod dystrophy. Sequence analysis of ABCA4 exons previously revealed one causative variant in each of 45 probands. To identify the "missing" variants in these cases, we performed multiplex ligation-dependent probe amplification-based deletion scanning of ABCA4. In addition, we sequenced the promoter region, fragments containing five deep-intronic splice variants, and 15 deep-intronic regions containing weak splice sites. Heterozygous deletions spanning ABCA4 exon 5 or exons 20-22 were found in two probands, heterozygous deep-intronic variants were identified in six probands, and a deep-intronic variant was found together with an exon 20-22 deletion in one proband. Based on ophthalmologic findings and characteristics of the identified exonic variants present in trans, the deep-intronic variants V1 and V4 were predicted to be relatively mild and severe, respectively. These findings are important for proper genetic counseling and for the development of variant-specific therapies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Estudos de Associação Genética/métodos , Degeneração Macular/congênito , Retinose Pigmentar/genética , Éxons , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons , Degeneração Macular/genética , Masculino , Linhagem , Análise de Sequência de DNA , Deleção de Sequência , Doença de Stargardt
9.
Hum Mol Genet ; 22(25): 5136-45, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918662

RESUMO

Mutations in ABCA4 cause Stargardt disease and other blinding autosomal recessive retinal disorders. However, sequencing of the complete coding sequence in patients with clinical features of Stargardt disease sometimes fails to detect one or both mutations. For example, among 208 individuals with clear clinical evidence of ABCA4 disease ascertained at a single institution, 28 had only one disease-causing allele identified in the exons and splice junctions of the primary retinal transcript of the gene. Haplotype analysis of these 28 probands revealed 3 haplotypes shared among ten families, suggesting that 18 of the 28 missing alleles were rare enough to be present only once in the cohort. We hypothesized that mutations near rare alternate splice junctions in ABCA4 might cause disease by increasing the probability of mis-splicing at these sites. Next-generation sequencing of RNA extracted from human donor eyes revealed more than a dozen alternate exons that are occasionally incorporated into the ABCA4 transcript in normal human retina. We sequenced the genomic DNA containing 15 of these minor exons in the 28 one-allele subjects and observed five instances of two different variations in the splice signals of exon 36.1 that were not present in normal individuals (P < 10(-6)). Analysis of RNA obtained from the keratinocytes of patients with these mutations revealed the predicted alternate transcript. This study illustrates the utility of RNA sequence analysis of human donor tissue and patient-derived cell lines to identify mutations that would be undetectable by exome sequencing.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Processamento Alternativo/genética , Retina/patologia , Adulto , Idoso de 80 Anos ou mais , Alelos , Exoma/genética , Éxons/genética , Feminino , Haplótipos , Humanos , Degeneração Macular/genética , Degeneração Macular/fisiopatologia , Masculino , Mutação , Linhagem , Sítios de Splice de RNA/genética , Doença de Stargardt
10.
Bioinformatics ; 30(23): 3438-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25123904

RESUMO

UNLABELLED: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. AVAILABILITY AND IMPLEMENTATION: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova.


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Algoritmos , Humanos , Internet , Software
11.
PLoS Genet ; 8(10): e1003001, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055945

RESUMO

Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is an autoimmune condition of the eye that sequentially mimics uveitis, retinitis pigmentosa, and proliferative diabetic retinopathy as it progresses to complete blindness. We identified two different missense mutations in the CAPN5 gene in three ADNIV kindreds. CAPN5 encodes calpain-5, a calcium-activated cysteine protease that is expressed in retinal photoreceptor cells. Both mutations cause mislocalization from the cell membrane to the cytosol, and structural modeling reveals that both mutations lie within a calcium-sensitive domain near the active site. CAPN5 is only the second member of the large calpain gene family to cause a human Mendelian disorder, and this is the first report of a specific molecular cause for autoimmune eye disease. Further investigation of these mutations is likely to provide insight into the pathophysiologic mechanisms of common diseases ranging from autoimmune disorders to diabetic retinopathy.


Assuntos
Calpaína/genética , Doenças da Coroide/genética , Oftalmopatias Hereditárias/genética , Mutação , Degeneração Retiniana/genética , Sequência de Aminoácidos , Sequência de Bases , Calpaína/química , Linhagem Celular , Células Cultivadas , Doenças da Coroide/patologia , Exoma , Éxons , Oftalmopatias Hereditárias/patologia , Feminino , Expressão Gênica , Ligação Genética , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Conformação Proteica , Transporte Proteico , Degeneração Retiniana/patologia , Alinhamento de Sequência
12.
Exp Eye Res ; 129: 93-106, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446321

RESUMO

Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with regional phenotypes.


Assuntos
Perfilação da Expressão Gênica , Macula Lutea/metabolismo , Epitélio Pigmentado Ocular/metabolismo , RNA Mensageiro/genética , Doenças Retinianas/genética , Idoso , Idoso de 80 Anos ou mais , Corioide , Feminino , Humanos , Macula Lutea/patologia , Masculino , Epitélio Pigmentado Ocular/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
13.
J Med Genet ; 50(9): 627-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804846

RESUMO

BACKGROUND: Non-syndromic hearing loss (NSHL) is the most common sensory impairment in humans. Until recently its extreme genetic heterogeneity precluded comprehensive genetic testing. Using a platform that couples targeted genomic enrichment (TGE) and massively parallel sequencing (MPS) to sequence all exons of all genes implicated in NSHL, we tested 100 persons with presumed genetic NSHL and in so doing established sequencing requirements for maximum sensitivity and defined MPS quality score metrics that obviate Sanger validation of variants. METHODS: We examined DNA from 100 sequentially collected probands with presumed genetic NSHL without exclusions due to inheritance, previous genetic testing, or type of hearing loss. We performed TGE using post-capture multiplexing in variable pool sizes followed by Illumina sequencing. We developed a local Galaxy installation on a high performance computing cluster for bioinformatics analysis. RESULTS: To obtain maximum variant sensitivity with this platform 3.2-6.3 million total mapped sequencing reads per sample were required. Quality score analysis showed that Sanger validation was not required for 95% of variants. Our overall diagnostic rate was 42%, but this varied by clinical features from 0% for persons with asymmetric hearing loss to 56% for persons with bilateral autosomal recessive NSHL. CONCLUSIONS: These findings will direct the use of TGE and MPS strategies for genetic diagnosis for NSHL. Our diagnostic rate highlights the need for further research on genetic deafness focused on novel gene identification and an improved understanding of the role of non-exonic mutations. The unsolved families we have identified provide a valuable resource to address these areas.


Assuntos
Surdez/genética , Testes Genéticos/métodos , Genômica/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
14.
Hum Mutat ; 34(6): 853-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23508994

RESUMO

The discovery of novel disease-associated variations in genes is often a daunting task in highly heterogeneous disease classes. We seek a generalizable algorithm that integrates multiple publicly available genomic data sources in a machine-learning model for the prioritization of candidates identified in patients with retinal disease. To approach this problem, we generate a set of feature vectors from publicly available microarray, RNA-seq, and ChIP-seq datasets of biological relevance to retinal disease, to observe patterns in gene expression specificity among tissues of the body and the eye, in addition to photoreceptor-specific signals by the CRX transcription factor. Using these features, we describe a novel algorithm, positive and unlabeled learning for prioritization (PULP). This article compares several popular supervised learning techniques as the regression function for PULP. The results demonstrate a highly significant enrichment for previously characterized disease genes using a logistic regression method. Finally, a comparison of PULP with the popular gene prioritization tool ENDEAVOUR shows superior prioritization of retinal disease genes from previous studies. The java source code, compiled binary, assembled feature vectors, and instructions are available online at https://github.com/ahwagner/PULP.


Assuntos
Estudos de Associação Genética , Doenças Retinianas/genética , Algoritmos , Animais , Inteligência Artificial , Biologia Computacional/métodos , Genômica/métodos , Humanos , Internet , Camundongos , Reprodutibilidade dos Testes , Software
15.
Hum Mutat ; 34(4): 539-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23280582

RESUMO

Autosomal dominant nonsyndromic hearing loss (ADNSHL) is a common and often progressive sensory deficit. ADNSHL displays a high degree of genetic heterogeneity and varying rates of progression. Accurate, comprehensive, and cost-effective genetic testing facilitates genetic counseling and provides valuable prognostic information to affected individuals. In this article, we describe the algorithm underlying AudioGene, a software system employing machine-learning techniques that utilizes phenotypic information derived from audiograms to predict the genetic cause of hearing loss in persons segregating ADNSHL. Our data show that AudioGene has an accuracy of 68% in predicting the causative gene within its top three predictions, as compared with 44% for a majority classifier. We also show that AudioGene remains effective for audiograms with high levels of clinical measurement noise. We identify audiometric outliers for each genetic locus and hypothesize that outliers may reflect modifying genetic effects. As personalized genomic medicine becomes more common, AudioGene will be increasingly useful as a phenotypic filter to assess pathogenicity of variants identified by massively parallel sequencing.


Assuntos
Perda Auditiva/diagnóstico , Perda Auditiva/genética , Software , Algoritmos , Audiometria , Testes Genéticos , Genótipo , Humanos , Internet , Fenótipo , Reprodutibilidade dos Testes
16.
Mol Vis ; 19: 2274-97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265543

RESUMO

PURPOSE: Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. METHODS: Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. RESULTS: Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). CONCLUSIONS: GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.


Assuntos
Corioide/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Degeneração Macular/genética , Degeneração Macular/patologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Fator H do Complemento/genética , Biologia Computacional , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Controle de Qualidade , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Fatores de Risco
17.
Exp Eye Res ; 111: 105-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500522

RESUMO

The normal gene expression profiles of the tissues in the eye are a valuable resource for considering genes likely to be involved with disease processes. We profiled gene expression in ten ocular tissues from human donor eyes using Affymetrix Human Exon 1.0 ST arrays. Ten different tissues were obtained from six different individuals and RNA was pooled. The tissues included: retina, optic nerve head (ONH), optic nerve (ON), ciliary body (CB), trabecular meshwork (TM), sclera, lens, cornea, choroid/retinal pigment epithelium (RPE) and iris. Expression values were compared with publically available Expressed Sequence Tag (EST) and RNA-sequencing resources. Known tissue-specific genes were examined and they demonstrated correspondence of expression with the representative ocular tissues. The estimated gene and exon level abundances are available online at the Ocular Tissue Database.


Assuntos
Éxons/genética , Fenômenos Fisiológicos Oculares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Corioide/fisiologia , Corpo Ciliar/fisiologia , Bancos de Olhos , Humanos , Cristalino/fisiologia , Disco Óptico/fisiologia , Retina/fisiologia , Esclera/fisiologia , Malha Trabecular/fisiologia
18.
Res Sq ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778238

RESUMO

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.

19.
Hum Mutat ; 32(7): 825-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21520338

RESUMO

The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.


Assuntos
Proteínas da Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Adolescente , Adulto , Idoso , Audiometria/métodos , Criança , Pré-Escolar , Feminino , Efeito Fundador , Proteínas Ligadas por GPI/genética , Estudos de Associação Genética , Ligação Genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Estrutura Terciária de Proteína/genética
20.
Hum Genet ; 129(1): 91-100, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20981449

RESUMO

Age-related macular degeneration (AMD) is a complex genetic disease, with many loci demonstrating appreciable attributable disease risk. Despite significant progress toward understanding the genetic and environmental etiology of AMD, identification of additional risk factors is necessary to fully appreciate and treat AMD pathology. In this study, we investigated copy number variants (CNVs) as potential AMD risk variants in a cohort of 400 AMD patients and 500 AMD-free controls ascertained at the University of Iowa. We used three publicly available copy number programs to analyze signal intensity data from Affymetrix GeneChip SNP Microarrays. CNVs were ranked based on prevalence in the disease cohort and absence from the control group; high interest CNVs were subsequently confirmed by qPCR. While we did not observe a single-locus "risk CNV" that could account for a major fraction of AMD, we identified several rare and overlapping CNVs containing or flanking compelling candidate genes such as NPHP1 and EFEMP1. These and other candidate genes highlighted by this study deserve further scrutiny as sources of genetic risk for AMD.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Degeneração Macular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso , Idoso de 80 Anos ou mais , Neovascularização de Coroide/epidemiologia , Neovascularização de Coroide/genética , Estudos de Coortes , Proteínas do Citoesqueleto , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Iowa/epidemiologia , Degeneração Macular/epidemiologia , Masculino , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Prevalência , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA