RESUMO
Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK. Blockade of MerTK resulted in accumulation of apoptotic cells within tumors and triggered a type I interferon response. Treatment of tumor-bearing mice with anti-MerTK antibody stimulated T cell activation and synergized with anti-PD-1 or anti-PD-L1 therapy. The anti-tumor effect induced by anti-MerTK treatment was lost in Stinggt/gt mice, but not in Cgas-/- mice. Abolishing cGAMP production in Cgas-/- tumor cells, depletion of extracellular ATP, or inactivation of the ATP-gated P2X7R channel also compromised the effects of MerTK blockade. Mechanistically, extracellular ATP acted via P2X7R to enhance the transport of extracellular cGAMP into macrophages and subsequent STING activation. Thus, MerTK blockade increases tumor immunogenicity and potentiates anti-tumor immunity, which has implications for cancer immunotherapy.
Assuntos
Macrófagos/imunologia , Proteínas de Membrana/metabolismo , Neoplasias/imunologia , Nucleotídeos Cíclicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , c-Mer Tirosina Quinase/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Antígeno B7-H1/imunologia , Células Cultivadas , Feminino , Imunidade Inata , Imunoterapia , Interferon Tipo I/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/metabolismo , Fagocitose , Receptor de Morte Celular Programada 1/imunologia , Receptores Purinérgicos P2X7/deficiência , Transdução de Sinais/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , c-Mer Tirosina Quinase/genéticaRESUMO
Efferocytosis is a phagocytic process by which apoptotic cells are cleared by professional and nonprofessional phagocytic cells. In tumors, efferocytosis of apoptotic cancer cells by tumor-associated macrophages prevents Ag presentation and suppresses the host immune response against the tumor. Therefore, reactivating the immune response by blockade of tumor-associated macrophage-mediated efferocytosis is an attractive strategy for cancer immunotherapy. Even though several methods have been developed to monitor efferocytosis, an automated and high-throughput quantitative assay should offer highly desirable advantages for drug discovery. In this study, we describe a real-time efferocytosis assay with an imaging system for live-cell analysis. Using this assay, we successfully discovered potent anti-MerTK Abs that block tumor-associated macrophage-mediated efferocytosis in mice. Furthermore, we used primary human and cynomolgus monkey macrophages to identify and characterize anti-MerTK Abs for potential clinical development. By studying the phagocytic activities of different types of macrophages, we demonstrated that our efferocytosis assay is robust for screening and characterization of drug candidates that inhibit unwanted efferocytosis. Moreover, our assay is also applicable to investigating the kinetics and molecular mechanisms of efferocytosis/phagocytosis.
Assuntos
Apoptose , Neoplasias , Camundongos , Humanos , Animais , c-Mer Tirosina Quinase , Macaca fascicularis , Fagocitose , Macrófagos , Neoplasias/patologiaRESUMO
Here, we explore whether PEGylation of antibodies can modulate their biodistribution to the eye, an organ once thought to be immune privileged but has recently been shown to be accessible to IV-administered large molecules, such as antibodies. We chose to PEGylate an anti-MerTK antibody, a target with known potential for ocular toxicity, to minimize biodistribution to retinal pigment epithelial cells (RPEs) in the eye by increasing the hydrodynamic volume of the antibody. We used site-specific conjugation to an engineered cysteine on anti-MerTK antibody to chemically attach 40-kDa branched or linear PEG polymers. Despite reduced binding to MerTK on cells, site-specifically PEGylated anti-MerTK retained similar potency in inhibiting MerTK-mediated macrophage efferocytosis of apoptotic cells. Importantly, we found that PEGylation of anti-MerTK significantly reduced MerTK receptor occupancy in RPE cells in both naïve mice and MC-38 tumor-bearing mice, with the branched PEG exhibiting a greater effect than linear PEG. Furthermore, similar to unconjugated anti-MerTK, PEGylated anti-MerTK antibody triggered type I IFN response and exhibited antitumor effect in syngeneic mouse tumor studies. Our results demonstrate the potential of PEGylation to control ocular biodistribution of antibodies.
Assuntos
Cisteína , Neoplasias , Camundongos , Animais , c-Mer Tirosina Quinase/metabolismo , Distribuição Tecidual , Cisteína/metabolismo , Fagocitose/fisiologia , Anticorpos/metabolismo , Neoplasias/metabolismo , Polietilenoglicóis/química , Polímeros/metabolismo , Pigmentos da Retina/metabolismoRESUMO
The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.
Assuntos
Biocombustíveis/provisão & distribuição , Metabolismo dos Carboidratos , Etanol/metabolismo , Engenharia Genética , Phaeophyceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/metabolismo , Anaerobiose , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Fermentação , Teste de Complementação Genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Manitol/metabolismo , Phaeophyceae/genética , Ácido Quínico/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Alga Marinha/genética , Alga Marinha/metabolismo , Ácidos Urônicos/metabolismoRESUMO
BACKGROUND AND PURPOSE: Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon , koff and KD ) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH: We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon , koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS: Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff , but not KD , correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS: Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.
RESUMO
Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described. GDC-0334 inhibited TRPA1 function on airway smooth muscle and sensory neurons, decreasing edema, dermal blood flow (DBF), cough, and allergic airway inflammation in several preclinical species. In a healthy volunteer Phase 1 study, treatment with GDC-0334 reduced TRPA1 agonist-induced DBF, pain, and itch, demonstrating GDC-0334 target engagement in humans. These data provide therapeutic rationale for evaluating TRPA1 inhibition as a clinical therapy for asthma.
Assuntos
Asma/tratamento farmacológico , Inflamação Neurogênica/tratamento farmacológico , Dor/tratamento farmacológico , Prurido/tratamento farmacológico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Canal de Cátion TRPA1/antagonistas & inibidores , Adolescente , Adulto , Animais , Estudos de Coortes , Modelos Animais de Doenças , Cães , Método Duplo-Cego , Feminino , Cobaias , Voluntários Saudáveis , Humanos , Isotiocianatos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Dor/induzido quimicamente , Prurido/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1/deficiência , Resultado do Tratamento , Adulto JovemRESUMO
IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.
Assuntos
Anticorpos Monoclonais Murinos/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Monoclonais Murinos/genética , Cães , Feminino , Glicosilação , Meia-Vida , Humanos , Imunoglobulina A/genética , Imunoglobulina G/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genéticaRESUMO
INTRODUCTION: Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy and asthma. The conventional gel contraction assay is commonly used to monitor the cellular contractility. It is a manual assay and the experiment usually takes hours even days to complete. As its readout is not always accurate and reliable, the gel contraction assay is often used to qualitatively (but not quantitatively) characterize cellular contractility under various conditions. METHOD: To overcome the limits of the gel contraction assay, we developed an impedance-based contraction assay using the xCELLigence RTCA MP system. This technology utilizes special 96-well E-plates with gold microelectrode arrays printed in individual wells to monitor cellular adhesion by recording the electrical impedance in real time. The impedance change (percentage vs. control) can be used as the readout for cellular contraction. RESULTS: We demonstrated that the impedance-based contraction assay can be performed within 2h. Using this new method, we quantitatively characterized the effects of several contractile stimulators and inhibitors on human primary bronchial smooth muscle cells and primary lung fibroblasts. DISCUSSION: The impedance-based contraction assay can be applied to both basic research and drug discovery for characterizing cellular contraction quantitatively. Because it has high throughput capacity and high reproducibility, the impedance-based contraction assay is useful for high throughput functional screening in drug industry.