Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Neurosci ; 51(3): 742-754, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544297

RESUMO

Persons suffering from opioid use disorder (OUD) experience long-lasting dysphoric symptoms well into extended periods of withdrawal. This protracted withdrawal syndrome is notably characterized by heightened anxiety and hyperkatifeia. Here, we investigated if an exacerbated withdrawal model of acute morphine dependence results in lasting behavioral adaptation 6 weeks into forced abstinence in C57BL/6J mice. We found that our exacerbated morphine withdrawal paradigm produced distinct alterations in behavior in elevated plus maze (EPM), open field, and social interaction tests in male and female mice. Following protracted withdrawal male mice showed enhanced exploration of the open arms of the EPM, reduced latency to enter the corner of the OF, and a social interaction deficit. In contrast, female mice showed enhanced thigmotaxis in the OF. In both sexes, protracted withdrawal enhanced locomotor behavior in response to subsequent morphine challenge, albeit at different doses. These findings will be relevant for future investigation examining the neural mechanisms underlying these behaviors and will aid in uncovering physiological sex differences in response to opioid withdrawal.


Assuntos
Analgésicos Opioides , Síndrome de Abstinência a Substâncias , Analgésicos Opioides/uso terapêutico , Animais , Ansiedade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina , Síndrome de Abstinência a Substâncias/tratamento farmacológico
2.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36415467

RESUMO

Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD. Highlights: Morphine withdrawal differentially dysregulates the sleep of male and female mice3-day precipitated withdrawal results in larger changes than spontaneous withdrawalOpioid withdrawal affects responses to future sleep deprivation differently between sexes.

3.
Behav Brain Res ; 448: 114441, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075956

RESUMO

Opioid misuse has dramatically increased over the last few decades resulting in many people suffering from opioid use disorder (OUD). The prevalence of opioid overdose has been driven by the development of new synthetic opioids, increased availability of prescription opioids, and more recently, the COVID-19 pandemic. Coinciding with increases in exposure to opioids, the United States has also observed increases in multiple Narcan (naloxone) administrations as a life-saving measures for respiratory depression, and, thus, consequently, naloxone-precipitated withdrawal. Sleep dysregulation is a main symptom of OUD and opioid withdrawal syndrome, and therefore, should be a key facet of animal models of OUD. Here we examine the effect of precipitated and spontaneous morphine withdrawal on sleep behaviors in C57BL/6 J mice. We find that morphine administration and withdrawal dysregulate sleep, but not equally across morphine exposure paradigms. Furthermore, many environmental triggers promote relapse to drug-seeking/taking behavior, and the stress of disrupted sleep may fall into that category. We find that sleep deprivation dysregulates sleep in mice that had previous opioid withdrawal experience. Our data suggest that the 3-day precipitated withdrawal paradigm has the most profound effects on opioid-induced sleep dysregulation and further validates the construct of this model for opioid dependence and OUD.


Assuntos
COVID-19 , Dependência de Morfina , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Masculino , Feminino , Camundongos , Animais , Humanos , Morfina/efeitos adversos , Analgésicos Opioides/farmacologia , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Pandemias , Naloxona/farmacologia , Naloxona/uso terapêutico , Entorpecentes/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Sono , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Dependência de Morfina/tratamento farmacológico
4.
Neuron ; 110(5): 739-741, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35240061

RESUMO

In this issue of Neuron, Liu et al. (2022) shed light on the neural circuits supporting pain- and anxiety-induced elevated breathing rhythms. They reveal PBL core-Oprm1 neurons projecting onto the CeA and shell-Oprm1 neurons projecting onto the preBötC as differential regulators of these behaviors.


Assuntos
Respiração , Centro Respiratório , Tronco Encefálico , Humanos , Neurônios/fisiologia , Dor/metabolismo , Centro Respiratório/fisiologia
5.
ACS Chem Neurosci ; 10(4): 1908-1914, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30252438

RESUMO

Stress can drive adaptive changes to maintain survival during threatening stimuli. Chronic stress exposure, however, may result in pathological adaptations. A key neurotransmitter involved in stress signaling is norepinephrine. Previous studies show that acute stress elevates norepinephrine levels in the bed nucleus of the stria terminalis (BNST), a critical node regulating anxiety and upstream of stress responses. Here, we use mice expressing channelrhodopsin in norepinephrine neurons to selectively activate terminals in the BNST, and measure norepinephrine release with optogenetics-assisted fast-scan cyclic voltammetry (FSCV). We demonstrate that while corticosterone habituates to chronic restraint stress, cFos activation of medullary norepinephrine neurons shows equivalent activation under both acute and chronic stress conditions. Mice exposed to a single restraint session show an identical optically stimulated norepinephrine release profile compared to that of unexposed mice. Mice experiencing 5 days of restraint stress, however, show elevated norepinephrine release across multiple stimulation parameters, and reduced sensitivity to the α2-adrenergic receptor (AR) antagonist idazoxan. These data are the first to examine norepinephrine release in the BNST to tonic and phasic stimulation frequencies, and confirm that repeated stress alters autoreceptor sensitivity.


Assuntos
Norepinefrina/metabolismo , Optogenética/métodos , Núcleos Septais/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Estimulação Luminosa/métodos , Núcleos Septais/química
6.
Abdom Radiol (NY) ; 42(5): 1583-1585, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27999884

RESUMO

PURPOSE: To assess the frequency of blood glucose level higher than 150 mg/dL in non-diabetic patients presenting for FDG PET. METHODS: We reviewed the electronic medical record (EMR) of all lymphoma patients who had at least one FDG PET/CT from July 1, 2014 through June 30, 2015. We extracted the blood glucose level at the time of the FDG PET during this 1-year time period and any previous PET scans these patients had. Patients' diabetic status was determined from EMR. RESULTS: One hundred seventeen patients with 574 scans were included: 91 non-diabetic with 429 scans and 26 diabetic patients with 145 scans. Blood glucose level ranged from 44 to 259 mg/dL: 44 to 144 mg/dL in non-diabetic patients and 73 to 259 mg/dL in diabetic patients. There was no non-diabetic patient with a glucose level higher than 150 mg/dL at any occasion. Only one scan was performed with 144 mg/dL of glucose. All other scans were performed with a glucose level less than 140 mg/dL. There were nine diabetic patients with glucose level less than 150 mg/dL prior to all of their scans and 17 diabetic patients with a glucose level higher than 150 mg/dL prior to PET at least on one occasion. CONCLUSIONS: In all non-diabetic patients, blood glucose level was below the lower limit of the recommended range prior to all their FDG PET scans while this was not the case in diabetic patients. We conclude that measuring blood glucose level prior to FDG PET may be limited to diabetic patients.


Assuntos
Glicemia/análise , Diabetes Mellitus/sangue , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA