RESUMO
BACKGROUND: Glioblastoma (GBM) is the most common adult malignant brain tumour, with an incidence of 5 per 100,000 per year in England. Patients with tumours showing O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation represent around 40% of newly diagnosed GBM. Relapse/tumour recurrence is inevitable. There is no agreed standard treatment for patients with GBM, therefore, it is aimed at delaying further tumour progression and maintaining health-related quality of life (HRQoL). Limited clinical trial data exist using cannabinoids in combination with temozolomide (TMZ) in this setting, but early phase data demonstrate prolonged overall survival compared to TMZ alone, with few additional side effects. Jazz Pharmaceuticals (previously GW Pharma Ltd.) have developed nabiximols (trade name Sativex®), an oromucosal spray containing a blend of cannabis plant extracts, that we aim to assess for preliminary efficacy in patients with recurrent GBM. METHODS: ARISTOCRAT is a phase II, multi-centre, double-blind, placebo-controlled, randomised trial to assess cannabinoids in patients with recurrent MGMT methylated GBM who are suitable for treatment with TMZ. Patients who have relapsed ≥ 3 months after completion of initial first-line treatment will be randomised 2:1 to receive either nabiximols or placebo in combination with TMZ. The primary outcome is overall survival time defined as the time in whole days from the date of randomisation to the date of death from any cause. Secondary outcomes include overall survival at 12 months, progression-free survival time, HRQoL (using patient reported outcomes from QLQ-C30, QLQ-BN20 and EQ-5D-5L questionnaires), and adverse events. DISCUSSION: Patients with recurrent MGMT promoter methylated GBM represent a relatively good prognosis sub-group of patients with GBM. However, their median survival remains poor and, therefore, more effective treatments are needed. The phase II design of this trial was chosen, rather than phase III, due to the lack of data currently available on cannabinoid efficacy in this setting. A randomised, double-blind, placebo-controlled trial will ensure an unbiased robust evaluation of the treatment and will allow potential expansion of recruitment into a phase III trial should the emerging phase II results warrant this development. TRIAL REGISTRATION: ISRCTN: 11460478. CLINICALTRIALS: Gov: NCT05629702.
Assuntos
Neoplasias Encefálicas , Canabinoides , Glioblastoma , Adulto , Humanos , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Canabinoides/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Estudos Multicêntricos como Assunto , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Temozolomida/uso terapêuticoRESUMO
BACKGROUND: Preclinical data suggest some cannabinoids may exert antitumour effects against glioblastoma (GBM). Safety and preliminary efficacy of nabiximols oromucosal cannabinoid spray plus dose-intense temozolomide (DIT) was evaluated in patients with first recurrence of GBM. METHODS: Part 1 was open-label and Part 2 was randomised, double-blind, and placebo-controlled. Both required individualised dose escalation. Patients received nabiximols (Part 1, n = 6; Part 2, n = 12) or placebo (Part 2 only, n = 9); maximum of 12 sprays/day with DIT for up to 12 months. Safety, efficacy, and temozolomide (TMZ) pharmacokinetics (PK) were monitored. RESULTS: The most common treatment-emergent adverse events (TEAEs; both parts) were vomiting, dizziness, fatigue, nausea and headache. Most patients experienced TEAEs that were grade 2 or 3 (CTCAE). In Part 2, 33% of both nabiximols- and placebo-treated patients were progression-free at 6 months. Survival at 1 year was 83% for nabiximols- and 44% for placebo-treated patients (p = 0.042), although two patients died within the first 40 days of enrolment in the placebo arm. There were no apparent effects of nabiximols on TMZ PK. CONCLUSIONS: With personalised dosing, nabiximols had acceptable safety and tolerability with no drug-drug interaction identified. The observed survival differences support further exploration in an adequately powered randomised controlled trial. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: Part 1- NCT01812603; Part 2- NCT01812616.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Canabidiol/administração & dosagem , Dronabinol/administração & dosagem , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Temozolomida/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Canabidiol/efeitos adversos , Canabidiol/farmacocinética , Relação Dose-Resposta a Droga , Método Duplo-Cego , Dronabinol/efeitos adversos , Dronabinol/farmacocinética , Combinação de Medicamentos , Humanos , Masculino , Pessoa de Meia-Idade , Sprays Orais , Medicina de Precisão , Análise de Sobrevida , Temozolomida/efeitos adversos , Temozolomida/farmacocinética , Resultado do TratamentoRESUMO
OBJECTIVES: MRI remains the preferred imaging investigation for glioblastoma. Appropriate and timely neuroimaging in the follow-up period is considered to be important in making management decisions. There is a paucity of evidence-based information in current UK, European and international guidelines regarding the optimal timing and type of neuroimaging following initial neurosurgical treatment. This study assessed the current imaging practices amongst UK neuro-oncology centres, thus providing baseline data and informing future practice. METHODS: The lead neuro-oncologist, neuroradiologist and neurosurgeon from every UK neuro-oncology centre were invited to complete an online survey. Participants were asked about current and ideal imaging practices following initial treatment. RESULTS: Ninety-two participants from all 31 neuro-oncology centres completed the survey (100% response rate). Most centres routinely performed an early post-operative MRI (87%, 27/31), whereas only a third performed a pre-radiotherapy MRI (32%, 10/31). The number and timing of scans routinely performed during adjuvant TMZ treatment varied widely between centres. At the end of the adjuvant period, most centres performed an MRI (71%, 22/31), followed by monitoring scans at 3 monthly intervals (81%, 25/31). Additional short-interval imaging was carried out in cases of possible pseudoprogression in most centres (71%, 22/31). Routine use of advanced imaging was infrequent; however, the addition of advanced sequences was the most popular suggestion for ideal imaging practice, followed by changes in the timing of EPMRI. CONCLUSION: Variations in neuroimaging practices exist after initial glioblastoma treatment within the UK. Multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment. KEY POINTS: ⢠Variations in imaging practices exist in the frequency, timing and type of interval neuroimaging after initial treatment of glioblastoma within the UK. ⢠Large, multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Estudos Prospectivos , Reino UnidoRESUMO
Dendritic cell (DC) immunotherapy is developing as a promising treatment modality for patients with glioblastoma multiforme (GBM). The aim of this article is to review the data from clinical trials and prospective studies evaluating the safety and efficacy of DC vaccines for newly diagnosed (ND)- and recurrent (Rec)-GBM and for other high-grade gliomas (HGGs). By searching all major databases we identified and reviewed twenty-two (n=22) such studies, twenty (n=20) of which were phase I and II trials, one was a pilot study towards a phase I/II trial and one was a prospective study. GBM patients were exclusively recruited in 12/22 studies, while 10/22 studies enrolled patients with any diagnosis of a HGG. In 7/22 studies GBM was newly diagnosed. In the vast majority of studies the vaccine was injected subcutaneously or intradermally and consisted of mature DCs pulsed with tumour lysate or peptides. Median overall survival ranged between 16.0 and 38.4 months for ND-GBM and between 9.6 and 35.9 months for Rec-GBM. Vaccine-related side effects were in general mild (grade I and II), with serious adverse events (grade III, IV and V) reported only rarely. DC immunotherapy therefore appears to have the potential to increase the overall survival in patients with HGG, with an acceptable side effect profile. The findings will require confirmation by the ongoing and future phase III trials.
Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Células Dendríticas/citologia , Glioblastoma/terapia , Imunoterapia , Animais , Terapia Combinada , HumanosRESUMO
BACKGROUND: The aim was to predict survival of glioblastoma at 8 months after radiotherapy (a period allowing for completing a typical course of adjuvant temozolomide), by applying deep learning to the first brain MRI after radiotherapy completion. METHODS: Retrospective and prospective data were collected from 206 consecutive glioblastoma, isocitrate dehydrogenase -wildtype patients diagnosed between March 2014 and February 2022 across 11 UK centers. Models were trained on 158 retrospective patients from 3 centers. Holdout test sets were retrospective (nâ =â 19; internal validation), and prospective (nâ =â 29; external validation from 8 distinct centers). Neural network branches for T2-weighted and contrast-enhanced T1-weighted inputs were concatenated to predict survival. A nonimaging branch (demographics/MGMT/treatment data) was also combined with the imaging model. We investigated the influence of individual MR sequences; nonimaging features; and weighted dense blocks pretrained for abnormality detection. RESULTS: The imaging model outperformed the nonimaging model in all test sets (area under the receiver-operating characteristic curve, AUC Pâ =â .038) and performed similarly to a combined imaging/nonimaging model (Pâ >â .05). Imaging, nonimaging, and combined models applied to amalgamated test sets gave AUCs of 0.93, 0.79, and 0.91. Initializing the imaging model with pretrained weights from 10 000s of brain MRIs improved performance considerably (amalgamated test sets without pretraining 0.64; Pâ =â .003). CONCLUSIONS: A deep learning model using MRI images after radiotherapy reliably and accurately determined survival of glioblastoma. The model serves as a prognostic biomarker identifying patients who will not survive beyond a typical course of adjuvant temozolomide, thereby stratifying patients into those who might require early second-line or clinical trial treatment.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/mortalidade , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Prospectivos , Idoso , Prognóstico , Aprendizado Profundo , Adulto , Taxa de Sobrevida , Seguimentos , Temozolomida/uso terapêuticoRESUMO
OBJECTIVE: To report imaging protocol and scheduling variance in routine care of glioblastoma patients in order to demonstrate challenges of integrating deep-learning models in glioblastoma care pathways. Additionally, to understand the most common imaging studies and image contrasts to inform the development of potentially robust deep-learning models. METHODS: MR imaging data were analysed from a random sample of five patients from the prospective cohort across five participating sites of the ZGBM consortium. Reported clinical and treatment data alongside DICOM header information were analysed to understand treatment pathway imaging schedules. RESULTS: All sites perform all structural imaging at every stage in the pathway except for the presurgical study, where in some sites only contrast-enhanced T1-weighted imaging is performed. Diffusion MRI is the most common non-structural imaging type, performed at every site. CONCLUSION: The imaging protocol and scheduling varies across the UK, making it challenging to develop machine-learning models that could perform robustly at other centres. Structural imaging is performed most consistently across all centres. ADVANCES IN KNOWLEDGE: Successful translation of deep-learning models will likely be based on structural post-treatment imaging unless there is significant effort made to standardise non-structural or peri-operative imaging protocols and schedules.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodosRESUMO
MGMT promoter methylation is related to the increased sensitivity of tumour tissue to chemotherapy with temozolomide (TMZ) and thus to improved patient survival. However, it is unclear how the extent of MGMT promoter methylation affects outcomes. In our study, a single-centre retrospective study, we explore the impact of MGMT promoter methylation in patients with glioblastoma who were operated upon with 5-ALA. Demographic, clinical and histology data, and survival rates were assessed. A total of 69 patients formed the study group (mean age 53.75 ± 15.51 years old). Positive 5-ALA fluorescence was noted in 79.41%. A higher percentage of MGMT promoter methylation was related to lower preoperative tumour volume (p = 0.003), a lower likelihood of 5-ALA positive fluorescence (p = 0.041) and a larger extent of resection EoR (p = 0.041). A higher MGMT promoter methylation rate was also related to improved progression-free survival (PFS) and overall survival (OS) (p = 0.008 and p = 0.006, respectively), even when adjusted for the extent of resection (p = 0.034 and p = 0.042, respectively). A higher number of adjuvant chemotherapy cycles was also related to longer PFS and OS (p = 0.049 and p = 0.030, respectively). Therefore, this study suggests MGMT promoter methylation should be considered as a continuous variable. It is a prognostic factor that goes beyond sensitivity to chemotherapy treatment, as a higher percentage of methylation is related not only to increased EoR and increased PFS and OS, but also to lower tumour volume at presentation and a lower likelihood of 5-ALA fluorescence intraoperatively.
RESUMO
BACKGROUND: No systemic treatment has been established for meningioma progressing after local therapies. METHODS: This randomized, multicenter, open-label, phase II study included adult patients with recurrent WHO grade 2 or 3 meningioma. Patients were 2:1 randomly assigned to intravenous trabectedin (1.5 mg/m2 every 3 weeks) or local standard of care (LOC). The primary endpoint was progression-free survival (PFS). Secondary endpoints comprised overall survival (OS), objective radiological response, safety, quality of life (QoL) assessment using the QLQ-C30 and QLQ-BN20 questionnaires, and we performed tissue-based exploratory molecular analyses. RESULTS: Ninety patients were randomized (n = 29 in LOC, n = 61 in trabectedin arm). With 71 events, median PFS was 4.17 months in the LOC and 2.43 months in the trabectedin arm (hazard ratio [HR] = 1.42; 80% CI, 1.00-2.03; P = .294) with a PFS-6 rate of 29.1% (95% CI, 11.9%-48.8%) and 21.1% (95% CI, 11.3%-32.9%), respectively. Median OS was 10.61 months in the LOC and 11.37 months in the trabectedin arm (HR = 0.98; 95% CI, 0.54-1.76; P = .94). Grade ≥3 adverse events occurred in 44.4% of patients in the LOC and 59% of patients in the trabectedin arm. Enrolled patients had impeded global QoL and overall functionality and high fatigue before initiation of systemic therapy. DNA methylation class, performance status, presence of a relevant co-morbidity, steroid use, and right hemisphere involvement at baseline were independently associated with OS. CONCLUSIONS: Trabectedin did not improve PFS and OS and was associated with higher toxicity than LOC treatment in patients with non-benign meningioma. Tumor DNA methylation class is an independent prognostic factor for OS.
Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Adulto , Neoplasias Encefálicas/induzido quimicamente , Neoplasias Encefálicas/tratamento farmacológico , Intervalo Livre de Doença , Humanos , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Qualidade de Vida , Trabectedina/efeitos adversos , Trabectedina/uso terapêutico , Organização Mundial da SaúdeRESUMO
BACKGROUND: Effective treatment for patients at least 70 years with newly diagnosed glioblastoma remains challenging and alternatives to conventional cytotoxics are appealing. Autophagy inhibition has shown promising efficacy and safety in small studies of glioblastoma and other cancers. METHODS: We conducted a randomized phase II trial to compare radiotherapy with or without hydroxychloroquine (2:1 allocation). Patients aged at least 70 years with newly diagnosed high-grade glioma deemed suitable for short-course radiotherapy with an ECOG performance status of 0-1 were included. Radiotherapy treatment consisted of 30 Gy, delivered as 6 fractions given over 2 weeks (5 Gy per fraction). Hydroxychloroquine was given as 200 mg orally b.d. from 7 days prior to radiotherapy until disease progression. The primary endpoint was 1-year overall survival (OS). Secondary endpoints included progression-free survival (PFS), quality of life, and toxicity. RESULTS: Fifty-four patients with a median age of 75 were randomized between May 2013 and October 2016. The trial was stopped early in 2016. One-year OS was 20.3% (95% confidence interval [CI] 8.2-36.0) hydroxychloroquine group, and 41.2% (95% CI 18.6-62.6) radiotherapy alone, with a median survival of 7.9 and 11.5 months, respectively. The corresponding 6-month PFS was 35.3% (95% CI 19.3-51.7) and 29.4% (95% CI 10.7-51.1). The outcome in the control arm was better than expected and the excess of deaths in the hydroxychloroquine group appeared unrelated to cancer. There were more grade 3-5 events in the hydroxychloroquine group (60.0%) versus radiotherapy alone (38.9%) without any clear common causation. CONCLUSIONS: Hydroxychloroquine with short-course radiotherapy did not improve survival compared to radiotherapy alone in elderly patients with glioblastoma.
RESUMO
BACKGROUND: In recent years an increasing number of patients with cerebral metastasis (CM) have been referred to the neuro-oncology multidisciplinary team (NMDT). Our aim was to obtain a national picture of CM referrals to assess referral volume and quality and factors affecting NMDT decision making. METHODS: A prospective multicenter cohort study including all adult patients referred to NMDT with 1 or more CM was conducted. Data were collected in neurosurgical units from November 2017 to February 2018. Demographics, primary disease, KPS, imaging, and treatment recommendation were entered into an online database. RESULTS: A total of 1048 patients were analyzed from 24 neurosurgical units. Median age was 65 years (range, 21-93 years) with a median number of 3 referrals (range, 1-17 referrals) per NMDT. The most common primary malignancies were lung (36.5%, n = 383), breast (18.4%, n = 193), and melanoma (12.0%, n = 126). A total of 51.6% (n = 541) of the referrals were for a solitary metastasis and resulted in specialist intervention being offered in 67.5% (n = 365) of cases. A total of 38.2% (n = 186) of patients being referred with multiple CMs were offered specialist treatment. NMDT decision making was associated with number of CMs, age, KPS, primary disease status, and extent of extracranial disease (univariate logistic regression, P < .001) as well as sentinel location and tumor histology (P < .05). A delay in reaching an NMDT decision was identified in 18.6% (n = 195) of cases. CONCLUSIONS: This study demonstrates a changing landscape of metastasis management in the United Kingdom and Ireland, including a trend away from adjuvant whole-brain radiotherapy and specialist intervention being offered to a significant proportion of patients with multiple CMs. Poor quality or incomplete referrals cause delay in NMDT decision making.
RESUMO
BACKGROUND: Glioblastoma multiforme with an oligodendroglial component (GBMO) has been recognized in the World Health Organization classification-however, the diagnostic criteria, molecular biology, and clinical outcome of primary GBMO remain unclear. Our aim was to investigate whether primary GBMO is a distinct clinicopathological subgroup of GBM and to determine the relative frequency of prognostic markers such as loss of heterozygosity (LOH) on 1p and/or 19q, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and isocitrate dehydrogenase 1 (IDH1) mutation. METHODS: We examined 288 cases of primary GBM and assessed the molecular markers in 57 GBMO and 50 cases of other primary GBM, correlating the data with clinical parameters and outcome. RESULTS: GBMO comprised 21.5% of our GBM specimens and showed significantly longer survival compared with our other GBM (12 mo vs 5.8 mo, P = .006); there was also a strong correlation with younger age at diagnosis (56.4 y vs 60.6 y, P = .005). Singular LOH of 19q (P = .04) conferred a 1.9-fold increased hazard of shorter survival. There was no difference in the frequencies of 1p or 19q deletion, MGMT promoter methylation, or IDH1 mutation (P = .8, P = 1.0, P = 1.0, respectively). CONCLUSIONS: Primary GBMO is a subgroup of GBM associated with longer survival and a younger age group but shows no difference in the frequency of LOH of 1p/19q, MGMT, and IDH1 mutation compared with other primary GBM.