RESUMO
Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.
Assuntos
Conservação dos Recursos Naturais/tendências , Produção Agrícola , Política Ambiental/tendências , Insetos/fisiologia , Polinização , Vertebrados/fisiologia , Animais , Abelhas/fisiologia , Borboletas/fisiologia , Mudança Climática , Produção Agrícola/economia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Ecossistema , Humanos , Espécies Introduzidas , Praguicidas/efeitos adversos , Praguicidas/toxicidade , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Dinâmica PopulacionalRESUMO
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. Higher levels of SARS-CoV-2 anti-Spike antibodies are known to be associated with increased protection against future SARS-CoV-2 infection. However, variation in antibody levels and risk factors for lower antibody levels following each round of SARS-CoV-2 vaccination have not been explored across a wide range of socio-demographic, SARS-CoV-2 infection and vaccination, and health factors within population-based cohorts. Methods: Samples were collected from 9361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies and tested for SARS-CoV-2 antibodies. Cross-sectional sampling was undertaken jointly in April-May 2021 (TwinsUK, N=4256; ALSPAC, N=4622), and in TwinsUK only in November 2021-January 2022 (N=3575). Variation in antibody levels after first, second, and third SARS-CoV-2 vaccination with health, socio-demographic, SARS-CoV-2 infection, and SARS-CoV-2 vaccination variables were analysed. Using multivariable logistic regression models, we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection, and SARS-CoV-2 vaccination variables. Results: Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had threefold greater odds of SARS-CoV-2 infection over the next 6-9 months (OR = 2.9, 95% CI: 1.4, 6.0), compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK 'Shielded Patient List' had consistently greater odds (two- to fourfold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations. Conclusions: These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies. Funding: Antibody testing was funded by UK Health Security Agency. The National Core Studies program is funded by COVID-19 Longitudinal Health and Wellbeing - National Core Study (LHW-NCS) HMT/UKRI/MRC ([MC_PC_20030] and [MC_PC_20059]). Related funding was also provided by the NIHR 606 (CONVALESCENCE grant [COV-LT-0009]). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. The UK Medical Research Council and Wellcome (Grant ref: [217065/Z/19/Z]) and the University of Bristol provide core support for ALSPAC.
Vaccination against the virus that causes COVID-19 triggers the body to produce antibodies that help fight future infections. But some people generate more antibodies after vaccination than others. People with lower levels of antibodies are more likely to get COVID-19 in the future. Identifying people with low antibody levels after COVID-19 vaccination is important. It could help decide who receives priority for future vaccination. Previous studies show that people with certain health conditions produce fewer antibodies after one or two doses of a COVID-19 vaccine. For example, people with weakened immune systems. Now that third booster doses are available, it is vital to determine if they increase antibody levels for those most at risk of severe COVID-19. Cheetham et al. show that a third booster dose of a COVID-19 vaccine boosts antibodies to high levels in 90% of individuals, including those at increased risk. In the experiments, Cheetham et al. measured antibodies against the virus that causes COVID-19 in 9,361 individuals participating in two large long-term health studies in the United Kingdom. The experiments found that UK individuals advised to shield from the virus because they were at increased risk of complications had lower levels of antibodies after one or two vaccine doses than individuals without such risk factors. This difference was also seen after a third booster dose, but overall antibody levels had large increases. People who received the Oxford/AstraZeneca vaccine as their first dose also had lower antibody levels after one or two doses than those who received the Pfizer/BioNTech vaccine first. Positively, this difference in antibody levels was no longer seen after a third booster dose. Individuals with lower antibody levels after their first dose were also more likely to have a case of COVID-19 in the following months. Antibody levels were high in most individuals after the third dose. The results may help governments and public health officials identify individuals who may need extra protection after the first two vaccine doses. They also support current policies promoting booster doses of the vaccine and may support prioritizing booster doses for those at the highest risk from COVID-19 in future vaccination campaigns.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Transversais , Fatores de Risco , Anticorpos Antivirais , Londres , Estudos Longitudinais , VacinaçãoRESUMO
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective population-based cohort which recruited pregnant women in 1990-1992 and has followed these women, their partners (Generation 0; G0) and their offspring (Generation 1; G1) ever since. The study reacted rapidly and repeatedly to the coronavirus disease 2019 (COVID-19) pandemic, deploying multiple online questionnaires and a previous home-based antibody test in October 2020. A second antibody test, in collaboration with ten other longitudinal population studies, was completed by 4,622 ALSPAC participants between April and June 2021. Of 4,241 participants with a valid spike protein antibody test result (8.2% were void), indicating antibody response to either COVID-19 vaccination or natural infection, 3,172 were positive (74.8%). Generational differences were substantial, with 2,463/2,555 G0 participants classified positive (96.4%) compared to 709/1,686 G1 participants (42.1%). Of 4,199 participants with a valid nucleocapsid antibody test result (9.2% were void), suggesting potential and recent natural infection, 493 were positive (11.7%); 248/2,526 G0 participants (9.8%) and 245/1,673 G1 participants (14.6%) tested positive, respectively. We also compare results for this round of testing to that undertaken in October 2020. Future work will combine these test results with additional sources of data to identify participants' COVID-19 infection and vaccination status. These ALSPAC COVID-19 serology data are being complemented with linkage to health records and Public Health England pillar testing results as they become available, in addition to four previous questionnaire waves and a prior antibody test. Data have been released as an update to the previous COVID-19 datasets. These comprise: 1) a standard dataset containing all participant responses to all four previous questionnaires with key sociodemographic factors; and 2) individual participant-specific release files enabling bespoke research across all areas supported by the study. This data note describes the second ALSPAC antibody test and the data obtained from it.
RESUMO
Neuroimaging offers a valuable insight into human brain development by allowing in vivo assessment of structure, connectivity and function. Multimodal neuroimaging data have been obtained as part of three sub-studies within the Avon Longitudinal Study of Parents and Children, a prospective multigenerational pregnancy and birth cohort based in the United Kingdom. Brain imaging data were acquired when offspring were between 18 and 24 years of age, and included acquisition of structural, functional and magnetization transfer magnetic resonance, diffusion tensor, and magnetoencephalography imaging. This resource provides a unique opportunity to combine neuroimaging data with extensive phenotypic and genotypic measures from participants, their mothers, and fathers.