Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Entropy (Basel) ; 26(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667876

RESUMO

We present a novel approach to characterize and quantify microheterogeneity and microphase separation in computer simulations of complex liquid mixtures. Our post-processing method is based on local density fluctuations of the different constituents in sampling spheres of varying size. It can be easily applied to both molecular dynamics (MD) and Monte Carlo (MC) simulations, including periodic boundary conditions. Multidimensional correlation of the density distributions yields a clear picture of the domain formation due to the subtle balance of different interactions. We apply our approach to the example of force field molecular dynamics simulations of imidazolium-based ionic liquids with different side chain lengths at different temperatures, namely 1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride, and 1-decyl-3-methylimidazolium chloride, which are known to form distinct liquid domains. We put the results into the context of existing microheterogeneity analyses and demonstrate the advantages and sensitivity of our novel method. Furthermore, we show how to estimate the configuration entropy from our analysis, and we investigate voids in the system. The analysis has been implemented into our program package TRAVIS and is thus available as free software.

2.
Phys Chem Chem Phys ; 25(12): 8755-8766, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897117

RESUMO

We present the extension of our force field BILFF (Bio-Polymers in Ionic Liquids Force Field) to the bio-polymer cellulose. We already published BILFF parameters for mixtures of ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. Our all-atom force field focuses on a quantitative reproduction of the hydrogen bonds in the complex mixture of cellulose, [EMIm]+, [OAc]- and water when compared to reference ab initio molecular dynamics (AIMD) simulations. To enhance the sampling, 50 individual AIMD simulations starting from different initial configurations were performed for cellulose in solvent instead of one long simulation, and the resulting averages were used for force field optimization. All cellulose force field parameters were iteratively adjusted starting from the literature force field of W. Damm et al. We were able to obtain a very good agreement with respect to both the microstructure of the reference AIMD simulations and experimental results such as the system density (even at higher temperatures) and the crystal structure. Our new force field allows performing very long simulations of large systems containing cellulose solvated in (aqueous) [EMIm][OAc] with almost ab initio accuracy.

3.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005314

RESUMO

We present an extension of our previously developed all-atom force field BILFF (Bio-polymers in Ionic Liquids Force Field) to three different ionic liquids: 1-ethyl-3-methyl-1,2,3-triazolium acetate ([EMTr][OAc]), 1-ethyl-3-methyl-1,2,3-triazolium benzoate ([EMTr][OBz]), and 1-ethyl-3-methylimidazolium benzoate ([EMIm][OBz]). These ionic liquids are of practical importance as they have the ability to dissolve significant amounts of cellulose even at room temperature. Our force field is optimized to accurately reproduce the strong hydrogen bonding in the system with nearly quantum chemical accuracy. A very good agreement between the microstructure of the quantum chemical simulations over a wide temperature range and experimental density data with the results of BILFF were observed. Non-trivial effects, such as the solvation shell structure and π-π stacking of the cations, are also accurately reproduced. Our force field enables accurate simulations of larger systems, such as solvated cellulose in different (aqueous) ionic liquids, and is the first to present the optimized parameters for mixtures of these solvents and water.

4.
Chemphyschem ; 23(11): e202200161, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35353934

RESUMO

Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, that is, the DFT based "clusters-in-a-liquid" solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP-D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations, which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed.


Assuntos
Metanol , Simulação de Dinâmica Molecular , Acetilcisteína/química , Rotação Ocular , Solventes/química , Análise Espectral Raman , Água/química
5.
J Chem Inf Model ; 62(22): 5634-5644, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36315975

RESUMO

We present a novel cluster analysis implemented in our open-source software TRAVIS and its application to realistic and complex chemical systems. The underlying algorithm is exclusively based on atom distances. Using a two-dimensional model system, we first introduce different cluster analysis functions and their application to single snapshots and trajectories including periodicity and temporal propagation. Using molecular dynamics simulations of pure water with varying system size, we show that our cluster analysis is size-independent. Furthermore, we observe a similar clustering behavior of pure water in classical and ab initio molecular dynamics simulations, showing that our cluster analysis is universal. In order to emphasize the application to more complex systems and mixtures, we additionally apply the cluster analysis to ab initio molecular dynamics simulations of the [C2C1Im][OAc] ionic liquid and its mixture with water. Using that, we show that our cluster analysis is able to analyze the clustering of the individual components in a mixture as well as the clustering of the ionic liquid with water.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Água/química , Software , Análise por Conglomerados
6.
J Phys Chem A ; 126(40): 7070-7083, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36170053

RESUMO

Weighting methods applied to systems with many conformers have been broadly employed to calculate thermodynamic properties, structural characteristics, and populations. To better understand and test the sensitivity of conventional weighting methods, the conformational distributions of nicotine and its phosphorus-substituted derivatives are investigated. The weighting schemes used for this are all based on Boltzmann statistics. Classical Boltzmann factors based on the electronic energy and the Gibbs free energy are calculated at different quantum chemical levels of theory and compared to cluster weights obtained by the quantum cluster equilibrium method. Furthermore, the influence of the modified rigid-rotor-harmonic-oscillator (mRRHO) approximation on the cluster weights is investigated. The substitution of the nitrogen atom in the methylpyrrolidine ring by a phosphorus atom results in more monomer conformers and clusters being populated. The conformational distribution of the monomers remained stable at different levels of theory and weighting methods. However, going to dimers and trimers, we observe a significant influence of the level of theory, weighting method, and mRRHO cutoff on the populations of these clusters. We show that mRRHO cutoff values of 50 and 100 cm-1 yield similar results, which is why 50 cm-1 is recommended as a robust choice. Furthermore, we observe that the global minimum for ΔE0 and ΔG varies in a few cases and that the global minimum is not always the dominantly occupied structure.


Assuntos
Nicotina , Teoria Quântica , Nitrogênio , Fósforo , Termodinâmica
7.
Phys Chem Chem Phys ; 23(2): 1242-1253, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33355320

RESUMO

We present BILFF, a novel force field for bio-polymers in ionic liquids. In the first part of our study, we introduce optimized force field parameters for mixtures of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. This imidazolium-based IL is of particular practical importance as it can dissolve significant amounts of cellulose even at room temperature. An understanding of this dissolution process via molecular dynamics simulations requires a quantitative description of the microscopic structure and the strong hydrogen bonds with a method able of simulating at least several dozen nanoseconds, which is the main aim of our novel force field. To reach this goal, we optimize the force field parameters to reproduce radial, spatial, and combined distribution functions, hydrogen bond lifetimes, diffusion coefficients, and several other quantities from reference ab initio molecular dynamics (AIMD) simulations. Non-trivial effects such as dispersion interactions between the side chains and π-π stacking of the cations are reproduced very well. We further validate the force field by comparison to experimental data such as thermal expansion coefficients, bulk modulus, and density at different temperatures, which yields good agreement and correct trends. No other force field with optimized parameters for mixtures of [EMIm][OAc] and water has been presented in the literature yet. Optimized force field parameters for cellulose and other ILs will be published in upcoming articles.

8.
J Phys Chem A ; 125(9): 1845-1859, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33651619

RESUMO

Bifunctional or amphoteric photoacids simultaneously present donor (acidic) and acceptor (basic) properties making them useful tools to analyze proton transfer reactions. In protic solvents, the proton exchange between the acid and the base is controlled by the acidity or basicity strength and typically occurs on two different pathways known as protolysis and hydrolysis. We report here how the addition of a formate base will alter the relative importance of the possible reaction pathways of the bifunctional photoacid 7-hydroxyquinoline (7HQ), which has been recently understood to predominantly involve a hydroxide/methoxide transport mechanism between the basic proton-accepting quinoline nitrogen site toward the proton-donating OH group with a time constant of 360 ps in deuterated methanol (CD3OD). We follow the reaction dynamics by probing the IR-active marker modes of the different charged forms of photoexcited 7HQ, and of formic acid (HCOOD) in CD3OD solution. A comparison of the transient IR spectra as a function of formate concentration, and classical molecular dynamics simulations enables us to identify distinct contributions of "tight" (meaning "contact") and "loose" (i.e., "solvent-separated") 7HQ-formate reaction pairs in our data. Our results suggest that depending on the orientation of the OH group with respect to the quinoline aromatic ring system, the presence of the formate molecule in a proton relay pathway facilitates a net proton transfer from the proton-donating OH group of 7HQ-N* via the methanol/formate bridge toward the quinoline N site.

9.
J Chem Phys ; 154(24): 244501, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241369

RESUMO

We report on the thermodynamic, structural, and dynamic properties of a recently proposed deep eutectic solvent, formed by choline acetate (ChAc) and urea (U) at the stoichiometric ratio 1:2, hereinafter indicated as ChAc:U. Although the crystalline phase melts at 36-38 °C depending on the heating rate, ChAc:U can be easily supercooled at sub-ambient conditions, thus maintaining at the liquid state, with a glass-liquid transition at about -50 °C. Synchrotron high energy x-ray scattering experiments provide the experimental data for supporting a reverse Monte Carlo analysis to extract structural information at the atomistic level. This exploration of the liquid structure of ChAc:U reveals the major role played by hydrogen bonding in determining interspecies correlations: both acetate and urea are strong hydrogen bond acceptor sites, while both choline hydroxyl and urea act as HB donors. All ChAc:U moieties are involved in mutual interactions, with acetate and urea strongly interacting through hydrogen bonding, while choline being mostly involved in van der Waals mediated interactions. Such a structural situation is mirrored by the dynamic evidences obtained by means of 1H nuclear magnetic resonance techniques, which show how urea and acetate species experience higher translational activation energy than choline, fingerprinting their stronger commitments into the extended hydrogen bonding network established in ChAc:U.

10.
Molecules ; 26(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810337

RESUMO

We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without any tuning, empiricism, or rescaling. We show that the basis set dependence of our method is very small. Only the total electron density is evaluated, and thus, the approach can be combined with any electronic structure method that provides volumetric total electron densities-it is not limited to Hartree-Fock or density functional theory (DFT). We have implemented the method into our open-source software tool TRAVIS.

11.
J Chem Phys ; 152(11): 114114, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32199428

RESUMO

We derive a matrix formalism for the simulation of long range proton dynamics for extended systems and timescales. On the basis of an ab initio molecular dynamics simulation, we construct a Markov chain, which allows us to store the entire proton dynamics in an M × M transition matrix (where M is the number of oxygen atoms). In this article, we start from common topology features of the hydrogen bond network of good proton conductors and utilize them as constituent constraints of our dynamic model. We present a thorough mathematical derivation of our approach and verify its uniqueness and correct asymptotic behavior. We propagate the proton distribution by means of transition matrices, which contain kinetic data from both ultra-short (sub-ps) and intermediate (ps) timescales. This concept allows us to keep the most relevant features from the microscopic level while effectively reaching larger time and length scales. We demonstrate the applicability of the transition matrices for the description of proton conduction trends in proton exchange membrane materials.

12.
J Chem Phys ; 152(16): 164110, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357794

RESUMO

We explicitly compute the non-equilibrium molecular dynamics of protons in the solid acid CsH2PO4 on the micrometer length scale via a multiscale Markov model: The molecular dynamics/matrix propagation (MDM) method. Within the MDM approach, the proton dynamics information of an entire molecular dynamics simulation can be condensed into a single M × M matrix (M is the number of oxygen atoms in the simulated system). Due to this drastic reduction in the complexity, we demonstrate how to increase the length and time scales in order to enable the simulation of inhomogeneities of CsH2PO4 systems at the nanometer scale. We incorporate explicit correlation of protonation dynamics with the protonation state of the neighboring proton sites and illustrate that this modification conserves the Markov character of the MDM method. We show that atomistic features such as the mean square displacement and the diffusion coefficient of the protons can be computed quantitatively from the matrix representation. Furthermore, we demonstrate the application potential of the scheme by computing the explicit dynamics of a non-equilibrium process in an 8 µm CsH2PO4 system during 5 ms.

13.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322424

RESUMO

We present a computational study on the enantioselectivity of organocatalytic proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking and formation. Our condensed phase simulation results are able to nicely reproduce the experimental findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of the change in syn:anti product ratio with different substituents. Furthermore, we give a microscopic explanation for the selectivity. We show that both the explicit description of the solvent and the inclusion of entropic effects are vital to a good outcome-metadynamics simulations in vacuum and static nudged elastic band (NEB) calculations yield significantly worse predictions when compared to the experiment. The approach described here can be applied to a plethora of other enantioselective or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the highest stereoselectivity.


Assuntos
Aldeídos/química , Técnicas de Química Sintética , Solventes/química , Catálise , Simulação por Computador , Entropia , Simulação de Dinâmica Molecular , Compostos Orgânicos , Prolina/química , Software , Estereoisomerismo , Temperatura , Termodinâmica , Água/química
14.
Molecules ; 25(15)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748878

RESUMO

We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.


Assuntos
Ânions/química , Celulose/química , Imidazóis/química , Líquidos Iônicos/química , Triazóis/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Solubilidade , Solventes/química
15.
Faraday Discuss ; 206: 219-245, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28933482

RESUMO

With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems, with focus on hydrogen bond, ion pair and ion cage formation. To do so, we report radial distribution functions, their number integrals, and various time-correlation functions, from which we extract well-defined lifetimes by means of the reactive flux formalism. We explore the influence of polarizable force fields vs. non-polarizable ones with downscaled charges (±0.8) for the example of 1-butyl-3-methylimidazolium bromide. Furthermore, we use 1-butyl-3-methylimidazolium trifluoromethanesulfonate to investigate the impact of temperature and mixing with water as well as with the chloride ionic liquid. Smaller coordination numbers, larger distances, and tremendously accelerated dynamics are observed when the polarizable force field is applied. The same trends are found with increasing temperature. Adding water decreases the ion-ion coordination numbers whereas the water-ion and water-water coordination is enhanced. A domain analysis reveals that the nonpolar parts of the ions are dispersed and when more water is added the water clusters increase in size. The dynamics accelerate in general upon addition of water. In the ionic liquid mixture, the coordination number around the cation changes between the two anions, but the number integrals of the cation around the anions remain constant and the dynamics slow down with increasing content of the chloride ionic liquid.

16.
J Chem Inf Model ; 58(10): 2092-2107, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30223650

RESUMO

We present our newly developed and highly efficient lossless compression algorithm for trajectories of atom positions and volumetric data. The algorithm is designed as a two-step approach. In the first step, efficient polynomial extrapolation schemes reduce the information entropy of the data by exploiting both spatial and temporal continuity. The second step processes the data by a series of transformations (Burrows-Wheeler, move-to-front, run length encoding) and finally compresses the stream with multitable canonical Huffman coding. Our approach reaches a compression ratio of around 15:1 for typical position trajectories in the XYZ format. For volumetric data trajectories in Gaussian Cube format (such as electron density), even a compression ratio of around 35:1 is yielded, which is by far the smallest size of all formats compared here. At the same time, compression and decompression are still reasonably fast for everyday use. The precision of the data can be selected by the user. For storage of the compressed data, we introduce the BQB file format, which is very robust, flexible, and efficient. In contrast to most archiving formats, it allows fast random access to individual trajectory frames. Our method is implemented in C++ and provided as free software under the GNU LGPL license. It has been included in the TRAVIS program package but is also available as stand-alone tool and as a library ("libbqb") for use in other projects.


Assuntos
Compressão de Dados/métodos , Software , Algoritmos , Biblioteca Gênica , Distribuição Normal
17.
Phys Chem Chem Phys ; 20(47): 29591-29600, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30328848

RESUMO

Deep eutectic solvents (DES) are a novel class of ionic liquid-based solvents, combining an organic salt and a hydrogen bond acceptor (HBA) at specific molar ratios. The resulting DES mixtures often have strongly depressed freezing points and feature properties well-known for ionic liquids as non-classical solvents. In this study, mixtures of 1-ethyl-3-methylimidazolium chloride ([EMIm][Cl]) and urea are investigated at different molar ratios mainly via electron paramagnetic resonance (EPR) spectroscopy on chemical environment-specific nitroxide-based spin probes, aided by differential scanning calorimetry (DSC) to obtain insights into the structure, dynamics, and molecular processes on the nanoscale. Molecular dynamics simulations, and Raman and pulse-field gradient (PFG) NMR spectroscopy are used to substantiate the insights in particular into the dynamic heterogeneities on the nanoscale. We find that indeed the mixing ratios leading to melting point extrema (two eutectic points, one dystectic point) show unusual EPR spectra indicating changes in the reorientational dynamics of the spin probes and their environmental polarity. By thorough EPR spectral analysis and simulation and in combination with data from the other methods, detailed assumptions on the nanostructure and dynamics in this DES can be made. It is shown that the macroscopic DES properties are governed by the nanoscale interface of IL-based nanoregions and urea-enriched regions. This nanointerface crucially depends on the chloride anion and its ability to form hydrogen bonds with urea which leads to distinctive structural changes.

18.
J Chem Phys ; 148(19): 193802, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307180

RESUMO

To investigate the structure and dynamics of small ionic liquid droplets in gas phase, we performed a DFT-based ab initio molecular dynamics study of several 1-ethyl-3-methylimidazolium acetate clusters in vacuum as well as a bulk phase simulation. We introduce an unbiased criterion for average droplet diameter and density. By extrapolation of the droplet densities, we predict the experimental bulk phase density with a deviation of only a few percent. The hydrogen bond geometry between cations and anions is very similar in droplets and bulk, but the hydrogen bond dynamics is significantly slower in the droplets, becoming slower with increasing system size, with hydrogen bond lifetimes up to 2000 ps. From a normal mode analysis of the trajectories, we identify the modes of the ring proton C-H stretching, which are strongly affected by hydrogen bonding. From analyzing these, we find that the hydrogen bond becomes weaker with increasing system size. The cations possess an increased concentration inside the clusters, whereas the anions show an excess concentration on the outside. Almost all anions point towards the droplet center with their carboxylic groups. Ring stacking is found to be a very important structural motif in the droplets (as in the bulk), but side chain interactions are only of minor importance. By using Voronoi tessellation, we define the exposed droplet surface and find that it consists mainly of hydrogen atoms from the cation's and anion's methyl and ethyl groups. Polar atoms are rarely found on the surface, such that the droplets appear completely hydrophobic on the outside.

19.
Pharmacol Res ; 123: 51-61, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28655644

RESUMO

The steroid hormone pregnenolone attenuates several in vivo behavioural and somatic effects of the phytocannabinoid Δ9-tetrahydrocannabinol, and it was suggested that pregnenolone can protect the brain from cannabis intoxication. The primary neuronal cannabinoid action behind most of the behavioural and somatic effects of cannabinoids is presynaptic inhibition of synaptic transmission. Therefore, the hypothesis of the present study was that pregnenolone attenuates the inhibition of synaptic transmission elicited by cannabinoids. Brain slices containing the cerebellum or the nucleus accumbens were prepared from brains of mice and rats. Spontaneous and electrically evoked GABAergic inhibitory postsynaptic currents (sIPSCs and eIPSCs) and evoked glutamatergic excitatory postsynaptic currents (eEPSCs) were recorded in superfused brain slices with patch-clamp electrophysiological techniques. Pregnenolone (10-7M) did not affect the spontaneous GABAergic synaptic input (sIPSCs) to Purkinje cells in mouse cerebellar slices. The synthetic mixed CB1/CB2 receptor agonists JWH-210 (5×10-6M) and JWH-018 (5×10-6M) inhibited the spontaneous GABAergic synaptic input (sIPSCs) to Purkinje cells. This inhibition was not affected by pregnenolone (10-7M). Tetrahydrodeoxycorticosterone (THDOC; 10-7M), an in vivo metabolite of pregnenolone, also did not affect the inhibition of the GABAergic synaptic transmission by JWH-018. The depolarization of the Purkinje cells induced suppression of the GABAergic input to Purkinje cells; pregnenolone (10-7M) did not affect this endocannabinoid-mediated form of synaptic suppression. In rat nucleus accumbens slices, glutamatergic and GABAergic synaptic input to medium spiny neurons was activated by electrical stimulation of axons. Δ9-Tetrahydrocannabinol (2×10-5M), which is a partial agonist of both CB1 and CB2 receptors, suppressed the glutamatergic and GABAergic synaptic transmission in the rat nucleus accumbens. These suppressive effects of Δ9-tetrahydrocannabinol were not changed by pregnenolone (10-7M). The suppression of the GABAergic synaptic transmission by Δ9-tetrahydrocannabinol in the rat nucleus accumbens was also not affected by THDOC (10-7M). The results indicate that pregnenolone, a neurosteroid, does not affect GABAergic synaptic transmission. The inhibition of GABAergic and glutamatergic synaptic transmission elicited by synthetic, endogenous and phyto-cannabinoids is also not changed by pregnenolone. Therefore, it is unlikely that interference with cannabinoid-induced inhibition of synaptic transmission is the mechanism by which pregnenolone attenuates behavioural and somatic effects of Δ9-tetrahydrocannabinol in vivo.


Assuntos
Canabinoides/farmacologia , Cerebelo/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Pregnenolona/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Cerebelo/fisiologia , Camundongos , Núcleo Accumbens/fisiologia , Técnicas de Patch-Clamp , Ratos Wistar
20.
Environ Sci Technol ; 51(7): 4018-4026, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28225253

RESUMO

Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving ß-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,ß-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functionalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft, and soft-soft adducts.


Assuntos
Aldeídos/química , Glutationa/química , Cromatografia Líquida de Alta Pressão , Glutationa Transferase , Cetonas/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA