Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr Pharmacol Ther ; 28(1): 84-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777987

RESUMO

OBJECTIVE: To evaluate the physical intravenous Y-site compatibility of 29 combinations of medications at commonly used pediatric concentrations using both existing and novel techniques. METHODS: Medication combinations included were selected by a varied group of pediatric inpatient pharmacists, and then assessed by 3 independent reviewers for existing literature. For each combination, 2 different medications were mixed together in a 1:1 ratio and incubated at room temperature for 4 hours to simulate Y-site administration. Each sample was then analyzed using the US Pharmacopeia (USP) <788> recommended analytical technique of light obscuration (LO) in addition to novel flow imaging (FI) microscopy and backgrounded membrane imaging (BMI). Physical compatibility was determined using USP chapter <788> large volume particle count limits for all techniques. RESULTS: A total of 29 different medication combinations were studied. Five combinations met criteria for compatibility by all 3 techniques. The remaining 24 combinations reached the threshold to be considered incompatible by at least 1 of the 3 techniques. Light obscuration, BMI, and FI identified 14%, 59%, and 76% of combinations as incompatible, respectively. All samples deemed incompatible by LO were also incompatible by at least 1 of the other 2 techniques. Flow imaging and BMI results agreed in 69% of samples tested. CONCLUSIONS: Most combinations tested were found to be incompatible by at least 1 of the 3 instruments used. Light obscuration appears to have reduced accuracy for identifying particulate resulting in physical medication incompatibility when compared with the novel techniques of FI and BMI.

2.
Front Aging Neurosci ; 15: 1271072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901790

RESUMO

Background: The administration of antidopaminergic medications to patients with Parkinson's disease (PD) can exacerbate symptoms, and in the hospital setting, can lead to complications and increased length of stay. Despite efforts to improve medication administration through provider education and patient-centered interventions, the problem persists, with an estimated 21-43% of hospitalized PD patients receiving dopamine blocking medications. Methods: In this study, a best practice alert (BPA) was developed that was triggered when an antidopaminergic medication was ordered in the Emergency Department or hospital for a patient with a diagnosis of PD in the EMR. The primary outcomes were receipt of a contraindicated medication, length of stay (LOS) and readmission within 30 days. These outcomes were compared between the 12 months prior to the intervention and the 12 months post intervention. Data were also collected on admitting diagnosis, admitting service, neurology involvement and patient demographics. Results: For pre-intervention inpatient encounters, 18.3% involved the use of a contraindicated medication. This was reduced to 9.4% of all inpatient encounters for PD patients in the first 3 months post-intervention and remained lower at 13.3% for the full 12 months post-intervention. The overall rate of contraindicated medication use was low for ED visits at 4.7% pre-intervention and 5.7% post-intervention. Receipt of a contraindicated medication increased the risk of a longer length of stay, both before and after the intervention, but did not significantly affect 30-day readmission rate. Conclusion: An EMR BPA decreased the use of contraindicated medications for PD patients in the hospital setting, especially in the first 3 months. Strategies are still needed to reduce alert fatigue in order to maintain initial improvements.

3.
Mitochondrial DNA B Resour ; 3(2): 972-973, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474384

RESUMO

The complete mitochondrial genome of a freshwater planorbid snail, Planorbella duryi (Mollusca, Gastropoda) was recovered from de novo assembly of genomic sequences generated with the Illumina NextSeq500 platform. The P. duryi mitogenome (14,217 base pairs) is AT rich (72.69%) and comprises 13 protein-coding genes, two ribosomal subunit genes, and 22 transfer RNAs. The gene order is identical to that of Biomphalaria glabrata and other snail species in the family Planorbidae. This is the first full characterization of a mitochondrial genome of the genus Planorbella.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA