Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Cell Biol ; 146(1): 125-40, 1999 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-10402465

RESUMO

We have identified a pair of related yeast proteins, Sro7p and Sro77p, based on their ability to bind to the plasma membrane SNARE (SNARE) protein, Sec9p. These proteins show significant similarity to the Drosophila tumor suppressor, lethal giant larvae and to the neuronal syntaxin-binding protein, tomosyn. SRO7 and SRO77 have redundant functions as loss of both gene products leads to a severe cold-sensitive growth defect that correlates with a severe defect in exocytosis. We show that similar to Sec9, Sro7/77 functions in the docking and fusion of post-Golgi vesicles with the plasma membrane. In contrast to a previous report, we see no defect in actin polarity under conditions where we see a dramatic effect on secretion. This demonstrates that the primary function of Sro7/77, and likely all members of the lethal giant larvae family, is in exocytosis rather than in regulating the actin cytoskeleton. Analysis of the association of Sro7p and Sec9p demonstrates that Sro7p directly interacts with Sec9p both in the cytosol and in the plasma membrane and can associate with Sec9p in the context of a SNAP receptor complex. Genetic analysis suggests that Sro7 and Sec9 function together in a pathway downstream of the Rho3 GTPase. Taken together, our studies suggest that members of the lethal giant larvae/tomosyn/Sro7 family play an important role in polarized exocytosis by regulating SNARE function on the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila , Exocitose , Proteínas Fúngicas/metabolismo , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Supressoras de Tumor , Proteínas rho de Ligação ao GTP , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/genética , Polaridade Celular , Temperatura Baixa , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Glicosídeo Hidrolases/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Mutação , Neuropeptídeos/química , Neuropeptídeos/genética , Testes de Precipitina , Proteínas Qc-SNARE , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , beta-Frutofuranosidase
2.
J Cell Biol ; 155(4): 581-92, 2001 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-11706050

RESUMO

The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth.


Assuntos
Exocitose/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Alelos , Ciclo Celular , Divisão Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Complexo de Golgi/metabolismo , Mutação Puntual , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
3.
J Cell Biol ; 154(3): 549-71, 2001 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-11489916

RESUMO

Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.


Assuntos
Polaridade Celular/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Proteínas de Bactérias/genética , Endocitose/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes cdc/fisiologia , Proteínas Luminescentes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Vesículas Secretórias/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
4.
Mol Cell Biol ; 8(12): 5575-80, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3244367

RESUMO

We report the molecular cloning and sequencing of the most abundant trimethylguanosine-capped small nuclear RNA from the fission yeast Schizosaccharomyces pombe, a highly conserved homolog of mammalian U2 small nuclear RNA. This RNA is 186 nucleotides in length, just 2 nucleotides shorter than its human counterpart; this is in contrast to Saccharomyces cerevisiae U2, which is 1,175 nucleotides long. Moreover, the secondary structure of Schizosaccharomyces pombe U2 is virtually identical to that of mammalian U2, including the 3' half of the RNA, which shows limited primary sequence identity. Northern (RNA) blot analysis revealed that the size of this RNA is conserved not only in fission yeasts but in many organisms, including other ascomycetes.


Assuntos
Sequência de Bases , Genes Fúngicos , RNA Nuclear Pequeno/genética , Saccharomycetales/genética , Schizosaccharomyces/genética , Homologia de Sequência do Ácido Nucleico , Animais , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Plantas/genética , Mapeamento por Restrição
5.
Mol Cell Biol ; 10(6): 2874-81, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2188102

RESUMO

We have cloned, sequenced, and disrupted the gene encoding U1 small nuclear RNA (snRNA) in the fission yeast Schizosaccharomyces pombe. This RNA is close in size and exhibits a high degree of secondary structure homology to human U1 RNA. There exist two regions of extended primary sequence identity between S. pombe and human U1 RNAs; the first comprises nucleotides involved in hydrogen bonding to 5' splice junctions, and the second is a single-stranded region which, in the human snRNA, forms part of the A protein binding site. S. pombe U1 lacks two nucleotides just following the 5' cap structure which are present in all other U1 homologs examined to date, and the region which corresponds to the binding site for the human 70K protein (molecular weight of 55,000) is more divergent than in other organisms. A putative upstream transcription signal is conserved in sequence and location among all loci encoding spliceosomal snRNAs in S. pombe with the exception of U6. Disruption of the single-copy U1 gene, designated snu1, reveals that this RNA is indispensable for viability.


Assuntos
Genes Fúngicos , RNA Nuclear Pequeno/genética , Saccharomycetales/genética , Schizosaccharomyces/genética , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Vetores Genéticos , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos , Splicing de RNA , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
6.
Mol Cell Biol ; 13(3): 1353-62, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8382769

RESUMO

Signal recognition particle (SRP) is a ribonucleoprotein composed of six polypeptides and a single RNA molecule. SRP RNA can be divided into four structural domains, the last of which is the most highly conserved and, in Schizosaccharomyces pombe, is the primary location to which deleterious mutations map. The ability of mammalian SRP54 protein (SRP54p) to bind Escherichia coli 4.5S RNA, a homolog of SRP RNA which contains only domain IV, suggested that SRP54p might interact directly with this region. To determine whether domain IV is critical for SRP54p binding in fission yeast cells, we used a native immunoprecipitation-RNA sequencing assay to test 13 mutant SRP RNAs for the ability to associate with the protein in vivo. The G156A mutation, which alters the 5' residue of the noncanonical first base pair of the domain IV terminal helix and confers a mild conditional growth defect, reduces assembly of the RNA with SRP54p. Mutating either of the two evolutionarily invariant residues in the bulged region 5' to G156 is more deleterious to growth and virtually abolishes SRP54p binding. We conclude that the conservation of nucleotides 154 to 156 is likely to be a consequence of their role as a sequence-specific recognition element for the SRP54 protein. We also tested a series of mutants with nucleotide substitutions in the conserved tetranucleotide loop and adjoining stem of domain IV. Although tetraloop mutations are deleterious to growth, they have little effect on SRP54p binding. Mutations which disrupt the base pair flanking the tetraloop result in conditional growth defects and significantly reduce association with SRP54p. Disruption of the other two base pairs in the short stem adjacent to the tetranucleotide loop has similar but less dramatic effects on SRP54p binding. These data provide the first evidence that both sequence-specific contacts and the structural integrity of domain IV of SRP RNA are important for assembly with SRP54p.


Assuntos
Proteínas Fúngicas/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/genética , Schizosaccharomyces/metabolismo , Sequência de Bases , Divisão Celular , Sequência Conservada , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fenótipo , Testes de Precipitina , RNA Fúngico/genética , Ribonucleoproteínas/imunologia , Schizosaccharomyces/crescimento & desenvolvimento , Partícula de Reconhecimento de Sinal , Relação Estrutura-Atividade
7.
Mol Cell Biol ; 12(5): 2017-28, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1569938

RESUMO

Sec4, a GTP-binding protein of the ras superfamily, is required for exocytosis in the budding yeast Saccharomyces cerevisiae. To test the role of GTP hydrolysis in Sec4 function, we constructed a mutation, Q-79----L, analogous to the oncogenic mutation of Q-61----L in Ras, in a region of Sec4 predicted to interact with the phosphoryl group of GTP. The sec4-leu79 mutation lowers the intrinsic hydrolysis rate to unmeasurable levels. A component of a yeast lysate specifically stimulates the hydrolysis of GTP by Sec4, while the rate of hydrolysis of GTP by Sec4-Leu79 can be stimulated by this GAP activity to only 30% of the stimulated hydrolysis rate of the wild-type protein. The decreased rate of hydrolysis results in the accumulation of the Sec4-Leu79 protein in its GTP-bound form in an overproducing yeast strain. The sec4-leu79 allele can function as the sole copy of sec4 in yeast cells. However, it causes recessive, cold-sensitive growth, a slowing of invertase secretion, and accumulation of secretory vesicles and displays synthetic lethality with a subset of other secretory mutants, indicative of a partial loss of Sec4 function. While the level of Ras function reflects the absolute level of GTP-bound protein, our results suggest that the ability of Sec4 to cycle between its GTP and GDP bound forms is important for its function in vesicular transport, supporting a mechanism for Sec4 function which is distinct from that of the Ras protein.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP , Sequência de Aminoácidos , Ligação Competitiva , Fracionamento Celular , Centrifugação com Gradiente de Concentração , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase , Genótipo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Hidrólise , Cinética , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae , Proteínas Ativadoras de ras GTPase
8.
Mol Cell Biol ; 8(4): 1580-90, 1988 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2837648

RESUMO

We have cloned the gene encoding a novel small cytoplasmic RNA from the fission yeast Schizosaccharomyces pombe. Four lines of evidence support the idea that this RNA is a homolog of the 7SL RNA component of mammalian signal recognition particle (SRP), which targets presecretory proteins to the endoplasmic reticulum membrane. First, it shares limited but significant primary sequence homology with previously identified 7SL RNAs and can be folded into a similar secondary structure. Second, it possesses the 5' triphosphate characteristic of unprocessed RNA polymerase III transcripts, and moreover, it is the only fission yeast RNA in this size range with such a terminus. Third, its behavior in cell fractionation experiments suggests that it is part of a small ribonucleoprotein which forms salt-labile contacts with larger structures. Fourth, the particle containing S. pombe 7SL RNA resembles mammalian SRP in both size (11S) and affinity for DEAE-Sepharose. Disruption of the single-copy gene, designated slr1+, reveals that the RNA is indispensable for growth in fission yeast. This result is not surprising, since secretion is an essential cellular process.


Assuntos
RNA Fúngico/genética , Ribonucleoproteínas/genética , Saccharomycetales/genética , Schizosaccharomyces/genética , Sequência de Bases , Clonagem Molecular , Enzimas de Restrição do DNA , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico , Partícula de Reconhecimento de Sinal , Especificidade da Espécie
9.
Mol Biol Cell ; 11(11): 3849-58, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11071911

RESUMO

The crystal structure of the synaptic SNARE complex reveals a parallel four-helix coiled-coil arrangement; buried in the hydrophobic core of the complex is an unusual ionic layer composed of three glutamines and one arginine, each provided by a separate alpha-helix. The presence of glutamine or arginine residues in this position is highly conserved across the t- and v-SNARE families, and it was recently suggested that a 3Q:1R ratio is likely to be a general feature common to all SNARE complexes. In this study, we have used genetic and biochemical assays to test this prediction with the yeast exocytic SNARE complex. We have determined that the relative position of Qs and Rs within the layer is not critical for biological activity and that Q-to-R substitutions in the layer reduce complex stability and result in lethal or conditional lethal growth defects. Surprisingly, SNARE complexes composed of four glutamines are fully functional for assembly in vitro and exocytic function in vivo. We conclude that the 3Q:1R layer composition is not required within the yeast exocytic SNARE complex because complexes containing four Q residues in the ionic layer appear by all criteria to be functionally equivalent. The unexpected flexibility of this layer suggests that there is no strict requirement for the 3Q:1R combination and that the SNARE complexes at other stages of transport may be composed entirely of Q-SNAREs or other noncanonical combinations.


Assuntos
Arginina , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Análise Mutacional de DNA , Exocitose/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Dominantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , Proteínas Qa-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Leveduras/genética , Leveduras/metabolismo
10.
Mol Biol Cell ; 10(12): 4121-33, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10588647

RESUMO

Budding yeast grow asymmetrically by the polarized delivery of proteins and lipids to specific sites on the plasma membrane. This requires the coordinated polarization of the actin cytoskeleton and the secretory apparatus. We identified Rho3 on the basis of its genetic interactions with several late-acting secretory genes. Mutational analysis of the Rho3 effector domain reveals three distinct functions in cell polarity: regulation of actin polarity, transport of exocytic vesicles from the mother cell to the bud, and docking and fusion of vesicles with the plasma membrane. We provide evidence that the vesicle delivery function of Rho3 is mediated by the unconventional myosin Myo2 and that the docking and fusion function is mediated by the exocyst component Exo70. These data suggest that Rho3 acts as a key regulator of cell polarity and exocytosis, coordinating several distinct events for delivery of proteins to specific sites on the cell surface.


Assuntos
Actinas/metabolismo , Polaridade Celular/fisiologia , Exocitose/fisiologia , Cadeias Pesadas de Miosina , Miosina Tipo II , Miosina Tipo V , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Mutação , Saccharomyces cerevisiae/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
11.
Genetics ; 155(4): 1643-55, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10924463

RESUMO

Saccharomyces cerevisiae cells contain two homologues of the mammalian t-SNARE protein SNAP-25, encoded by the SEC9 and SPO20 genes. Although both gene products participate in post-Golgi vesicle fusion events, they cannot substitute for one another; Sec9p is active primarily in vegetative cells while Spo20p functions only during sporulation. We have investigated the basis for the developmental stage-specific differences in the function of these two proteins. Localization of the other plasma membrane SNARE subunits, Ssop and Sncp, in sporulating cells suggests that these proteins act in conjunction with Spo20p in the formation of the prospore membrane. In vitro binding studies demonstrate that, like Sec9p, Spo20p binds specifically to the t-SNARE Sso1p and, once bound to Sso1p, can complex with the v-SNARE Snc2p. Therefore, Sec9p and Spo20p interact with the same binding partners, but developmental conditions appear to favor the assembly of complexes with Spo20p in sporulating cells. Analysis of chimeric Sec9p/Spo20p molecules indicates that regions in both the SNAP-25 domain and the unique N terminus of Spo20p are required for activity during sporulation. Additionally, the N terminus of Spo20p is inhibitory in vegetative cells. Deletion studies indicate that activation and inhibition are separable functions of the Spo20p N terminus. Our results reveal an additional layer of regulation of the SNARE complex, which is necessary only in sporulating cells.


Assuntos
ATPases Transportadoras de Cálcio , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Western Blotting , Membrana Celular , Imunofluorescência , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genótipo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutagênese , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Qa-SNARE , Proteínas Qc-SNARE , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Proteína 25 Associada a Sinaptossoma , Temperatura
12.
FEBS Lett ; 415(1): 49-55, 1997 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-9326367

RESUMO

The evolutionarily conserved SNARE (SNAP receptor) proteins and their complexes are key players in the docking and fusion of secretory vesicles with their target membrane. Biophysical techniques were used to characterize structural and energetic properties of the cytoplasmic domains of the yeast SNAREs Snc1 and Sso1, of the SNAP-25-like domain of Sec9, and of the Sso1:Sec9 and Sso1:Sec9:Snc1 complexes. Individually, all three SNAREs are monomeric; Sso1 shows significant secondary structure while Snc1 and Sec9 are largely unstructured. Ternary SNARE complex formation (KD <50 nM) is accompanied by a more than two-fold increase in secondary structure. This binding induced structure, the large increase in thermal stability, and the self-association of the ternary complex represent conserved properties of SNAREs that are probably important in vesicle docking and fusion.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Sequência de Bases , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Sintéticos , Fusão de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Proteínas Qa-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Espectrometria de Fluorescência , Temperatura , Ultracentrifugação
13.
FEBS Lett ; 309(1): 5-9, 1992 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-1511744

RESUMO

Previous studies have demonstrated that Sec4, a 23.5 kDa guanine nucleotide-binding protein of the ras superfamily is required for exocytosis in the budding yeast Saccharomyces cerevisiae. Ypt1, another ras-like 23 kDa guanine nucleotide-binding protein in yeast has been found to be involved in ER-Golgi transport. A mammalian homologue of Ypt1 called rab1 has also been identified. Recent studies using purified Sec4 protein have identified a component of yeast lystate that specifically stimulates the hydrolysis of GTP bound to Sec4. In the present study, purified recombinant Sec4 and Ypt1 proteins expressed in E. coli have been used as substrates to determine if GTPase activating proteins (GAPs) directed toward these proteins are present in rat pancreas. Our studies showed that 65% of Sec4-GAP activity was associated with the 150,000 x g pancreatic particulate fraction with approximately 35% being found in the cytosol. On the other hand, more than 95% of Ypt1-GAP activity was found to associate with the particulate fraction. Sec4 and Ypt1 competition assays further demonstrated the specificity of the Sec4 and Ypt1 GAPs. The results from the present study suggest the presence of a distinct GAP in the pancreas that interacts with Sec4, and another that interacts with Ypt1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Pâncreas/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP , Animais , Ligação Competitiva , Citosol/metabolismo , Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Masculino , Ratos , Ratos Endogâmicos , Proteínas Ativadoras de ras GTPase
16.
Nature ; 362(6420): 560-3, 1993 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-8464498

RESUMO

The genes SEC4 and YPT1 encode Ras-related GTP-binding proteins in the yeast Saccharomyces cerevisiae. Ypt1 is necessary for vesicular transport from the endoplasmic reticulum to the Golgi, whereas Sec4 is required for fusion of post-Golgi secretory vesicles to the plasma membrane. Recently, three structural domains have been proposed to specify the stage in cellular transport at which members of the Sec4/Ypt1/Rab family act: the effector domain, the C-terminal hypervariable region, and a region corresponding to loop 7 in the structure of p21ras (ref. 8). Here we use Sec4/Ypt1 chimaeras to show that these three regions cooperate to specify Ypt1 function and that the C-terminal hypervariable region is needed for Ypt1 localization to the Golgi. Unexpectedly, we found that a single chimaera can function as either Ypt1 or Sec4 without missorting carboxypeptidase Y or invertase.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Proteínas rab de Ligação ao GTP , Sequência de Aminoácidos , Carboxipeptidases/metabolismo , Catepsina A , Análise Mutacional de DNA , Imunofluorescência , Proteínas Fúngicas/química , Glicosídeo Hidrolases/metabolismo , Complexo de Golgi/química , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , beta-Frutofuranosidase
17.
Yeast ; 10(2): 159-72, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8203158

RESUMO

We report the development of a homologous in vitro assay system for analysing translocation of proteins across the endoplasmic reticulum (ER) membrane of the fission yeast Schizosaccharomyces pombe. Our protocol for preparing an S. pombe extract capable of translating natural messenger RNAs was modified from a procedure previously used for Saccharomyces cerevisiae, in which cells are lysed in a bead-beater. However, we were unable to prepare fission yeast microsomes active in protein translocation using existing budding yeast protocols. Instead, our most efficient preparations were isolated by fractionating spheroplasts, followed by extensive washing and size exclusion chromatography of the crude membranes. Translocation of two ER-targeted proteins, pre-acid phosphatase from S. pombe and prepro-alpha-factor from S. cerevisiae, was monitored using two distinct assays. First, evidence that a fraction of both proteins was sequestered within membrane-enclosed vesicles was provided by resistance to exogenously added protease. Second, the protected fraction of each protein was converted to a higher molecular weight, glycosylated form; attachment of carbohydrate to the translocated proteins was confirmed by their ability to bind Concanavalin A-Sepharose. Finally, we examined whether proteins could be translocated across fission yeast microsomal membranes after their synthesis was complete. Our results indicate that S. cerevisiae prepro-alpha-factor can be post-translationally imported into the fission yeast ER, while S. pombe pre-acid phosphatase crosses the membrane only by a co-translational mechanism.


Assuntos
Fosfatase Ácida/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Schizosaccharomyces/metabolismo , Transporte Biológico/efeitos dos fármacos , Compartimento Celular , Fracionamento Celular , Sistema Livre de Células , Glicosilação , Fator de Acasalamento , Microssomos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/química , Sais/farmacologia , Schizosaccharomyces/enzimologia , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 86(11): 4137-41, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2657742

RESUMO

We have studied the effects of mutations in a 6-base segment of Schizosaccharomyces pombe 7SL RNA, which lies within a 35-nucleotide domain whose sequence and secondary structure are conserved in RNAs from many divergent organisms, including the 7SL component of human signal recognition particle (SRP). Surprisingly, many changes in this region can be tolerated under normal growth conditions. An exception is the lethality of several mutations at positions 159 and 160, 2 nucleotides previously shown to be protected from RNase digestion by the 19-kDa canine SRP protein. Nucleotide 160 is, in addition, the most highly conserved base in a consensus sequence for the most common tetranucleotide loop in ribosomal RNAs. Mutations that are likely to affect the stability and/or conformation of the RNA give rise to a conditional phenotype: when osmolarity of the medium is raised, the RNAs become partially or completely defective in function at high temperature.


Assuntos
RNA Fúngico/genética , Saccharomycetales/genética , Schizosaccharomyces/genética , Sequência de Bases , Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Plasmídeos , Transformação Genética
19.
Nucleic Acids Res ; 16(21): 10131-52, 1988 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-3194197

RESUMO

We have cloned and sequenced one of the two genes encoding a 255 nucleotide small nuclear RNA from the fission yeast Schizosaccharomyces pombe. Based on the presence of four regions of primary sequence conservation and a predicted secondary structure similar to that previously proposed for human U3, we conclude that this molecule is the fission yeast homologue of this mammalian snRNA. The 5' one-third of fission yeast U3 is, however, unable to form a single stable hairpin as proposed for this region of the human RNA, but rather folds into two stem-loop structures. By analogy to fission yeast U3, we propose revised secondary structures containing two hairpins for this portion of the U3-like snRNAs from Saccharomyces cerevisiae and Dictyostelium discoideum. Thus, our data suggest that the structure of U3 snRNA has diverged in lower and higher eukaryotes.


Assuntos
Evolução Biológica , Genes Fúngicos , RNA Nuclear Pequeno/genética , Saccharomycetales/genética , Schizosaccharomyces/genética , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mapeamento por Restrição , Especificidade da Espécie
20.
J Biol Chem ; 272(26): 16610-7, 1997 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-9195974

RESUMO

SNARE proteins represent a family of related proteins that are thought to have a central role in vesicle targeting and fusion in all eukaryotic cells. The binding properties of the neuronal proteins synaptobrevin 1 (VAMP1), syntaxin 1, SNAP-25, and soluble N-ethylmaleimide-sensitive factor attachment protein (alpha-SNAP), have been extensively studied. We report here the first biochemical characterization of a nonneuronal SNARE complex using recombinant forms of the yeast exocytic SNARE proteins Snc1, Sso1, and Sec9 and the yeast alpha-SNAP homolog, Sec17. Despite the low level of sequence identity, the association properties of the yeast and neuronal complexes are remarkably similar. The most striking difference we have found between the yeast and neuronal proteins is that individually neither of the target membrane SNAREs (t-SNAREs), Sso1 nor Sec9, show any detectable binding to the synaptobrevin homolog, Snc1. However, as a hetero-oligomeric complex, Sec9 and Sso1 show strong binding to Snc1. The clear dependence on the Sso1-Sec9 complex for t-SNARE function suggests that regulating the formation of this complex may be a key step in determining the site of vesicle fusion. In addition, we have used this in vitro assay to examine the biochemical effects of several mutations in Sec9 that result in pronounced growth defects in vivo. As expected, a temperature-sensitive mutation in the region most highly conserved between Sec9 and SNAP-25 is severely diminished in its ability to bind Sso1 and Snc1 in vitro. In contrast, a temperature-sensitive mutation near the C terminus of Sec9 shows no defect in SNARE binding in vitro. Similarly, a deletion of the C-terminal 17 residues, which is lethal in vivo, also binds Sso1 and Snc1 normally in vitro. Interestingly, we find that these same two C-terminal mutants, but not mutants that show SNARE assembly defects in vitro, act as potent dominant negative alleles when expressed behind a strong regulated promoter. Taken together these results suggest that the C-terminal domain of Sec9 is specifically required for a novel interaction that is required at a step following SNARE assembly.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Leveduras/metabolismo , Sequência de Aminoácidos , Animais , Toxinas Botulínicas/farmacologia , Proteínas Fúngicas/química , Proteínas de Membrana/química , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Qa-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Coelhos , Proteínas Recombinantes/metabolismo , Proteínas SNARE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA