Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(22): e202300531, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883250

RESUMO

Enhancing NMR signals of biomacromolecules by hyperpolarization offers exciting opportunities for diagnostic applications. However, their hyperpolarization via parahydrogen remains challenging as specific catalytic interactions are required, which are difficult to tune due to the large size of the biomolecule and its insolubility in organic solvents. Herein, we show the unprecedented hyperpolarization of the cancer-targeting DNA aptamer AS1411. By screening different molecular motifs for an unsaturated label in nucleosides and in DNA oligomers, we were able to identify structural prerequisites for the hyperpolarization of AS1411. Finally, adjusting the polarity of AS1411 by complexing the DNA backbone with amino polyethylene glycol chains allowed the hydrogenation of the label with parahydrogen while the DNA structure remains stable to maintain its biological function. Our results are expected to advance hyperpolarized molecular imaging technology for disease detection in the future.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Hidrogenação , Imageamento por Ressonância Magnética
2.
Adv Mater ; 35(47): e2305130, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37494284

RESUMO

Polymer mechanochemistry is a promising technology to convert mechanical energy into chemical functionality by breaking covalent and supramolecular bonds site-selectively. Yet, the mechanochemical reaction rates of covalent bonds in typically used ultrasonication setups lead to reasonable conversions only after comparably long sonication times. This can be accelerated by either increasing the reactivity of the mechanoresponsive moiety or by modifying the encompassing polymer topology. Here, a microbubble system with a tailored polymer shell consisting of an N2 gas core and a mechanoresponsive disulfide-containing polymer network is presented. It is found that the mechanochemical activation of the disulfides is greatly accelerated using these microbubbles compared to commensurate solid core particles or capsules filled with liquid. Aided by computational simulations, it is found that low shell thickness, low shell stiffness and crosslink density, and a size-dependent eigenfrequency close to the used ultrasound frequency maximize the mechanochemical yield over the course of the sonication process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA