Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(11): 2884-2897, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811404

RESUMO

Many animals, including insects, exhibit plasticity of body colour in response to environmental changes. Varied expression of carotenoids, major cuticle pigments, significantly contributes to body colour flexibility. However, the molecular mechanisms by which environmental cues regulate carotenoid expression remain largely unknown. In this study, we used the ladybird Harmonia axyridis as a model to investigate the photoperiodic-responsive plasticity of elytra coloration and its endocrine regulation. It was found that H. axyridis females under long-day conditions develop elytra that are much redder than those under short-day conditions, resulting from the differential accumulation of carotenoids. Exogenous hormone application and RNAi-mediated gene knockdown indicate that carotenoid deposition was directed through the juvenile hormone (JH) receptor-mediated canonical pathway. Moreover, we characterized an SR-BI/CD36 (SCRB) gene SCRB10 as the carotenoid transporter responding to JH signalling and regulating the elytra coloration plasticity. Taken together, we propose that JH signalling transcriptionally regulates the carotenoid transporter gene for the photoperiodic coloration plasticity of elytra in the beetles, which reveals a novel role of the endocrine system in the regulation of carotenoid-associated animal body coloration under environmental stimuli.


Assuntos
Besouros , Animais , Feminino , Besouros/genética , Pigmentação/genética , Carotenoides , Interferência de RNA
2.
Gen Comp Endocrinol ; 303: 113708, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388363

RESUMO

Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.


Assuntos
Heterópteros , Transcriptoma , Animais , Clonagem Molecular , Heterópteros/genética , Plantas , Reação em Cadeia da Polimerase , Transcriptoma/genética
3.
J Insect Sci ; 21(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400796

RESUMO

The western tarnished plant bug, Lygus hesperus Knight, overwinters as a diapausing adult in response to short day lengths. Once environmental conditions are favorable, the bugs revert to an active reproductive state. To determine the impact on life-history traits of diverting resources toward diapause rather than oogenesis during early adulthood, diapausing and nondiapausing L. hesperus females were reared from the same cohorts. Body mass, ovarian maturation, ovipositional activity, and survivorship were monitored starting either at the time of release from diapause-inducing conditions or at adult eclosion for diapausers and nondiapausers, respectively. Females that had gone through 2 wk of diapause were larger and able to mobilize the resources necessary for oogenesis faster than nondiapausers, initiating oogenesis and ovipositing sooner and at a faster initial rate. However, lifetime egg production and average daily rates were similar for both groups. Postdiapausers lived longer than nondiapausers by an average of 19 d, which is five more than the 2-wk period when they were reproductively senescent. Overall, the results indicate that short-term diapause does not have a negative impact on life history. Furthermore, the extra endogenous resources stored during diapause may be able to enhance the alacrity with which the female can take advantage of improved environmental conditions and may prolong life by shielding the females against environmental stressors such as temperature extremes, oxidative agents, or food deficits.


Assuntos
Diapausa de Inseto , Heterópteros/fisiologia , Características de História de Vida , Oogênese , Oviposição , Animais , Feminino , Heterópteros/crescimento & desenvolvimento
4.
J Anim Ecol ; 88(2): 236-246, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289166

RESUMO

Animals must effectively balance the time they spend exploring the environment for new resources and exploiting them. One way that social animals accomplish this balance is by allocating these two tasks to different individuals. In honeybees, foraging is divided between scouts, which tend to explore the landscape for novel resources, and recruits, which tend to exploit these resources. Exploring the variation in cognitive and physiological mechanisms of foraging behaviour will provide a deeper understanding of how the division of labour is regulated in social insect societies. Here, we uncover how honeybee foraging behaviour may be shaped by predispositions in performance of latent inhibition (LI), which is a form of non-associative learning by which individuals learn to ignore familiar information. We compared LI between scouts and recruits, hypothesizing that differences in learning would correlate with differences in foraging behaviour. Scouts seek out and encounter many new odours while locating novel resources, while recruits continuously forage from the same resource, even as its quality degrades. We found that scouts show stronger LI than recruits, possibly reflecting their need to discriminate forage quality. We also found that scouts have significantly elevated tyramine compared to recruits. Furthermore, after associative odour training, recruits have significantly diminished octopamine in their brains compared to scouts. These results suggest that individual variation in learning behaviour shapes the phenotypic behavioural differences between different types of honeybee foragers. These differences in turn have important consequences for how honeybee colonies interact with their environment. Uncovering the proximate mechanisms that influence individual variation in foraging behaviour is crucial for understanding the ecological context in which societies evolve.


Assuntos
Individualidade , Aprendizagem , Animais , Abelhas , Aminas Biogênicas , Memória , Comportamento Social
5.
Arch Insect Biochem Physiol ; 100(2): e21527, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30588650

RESUMO

Insect eye coloration arises from the accumulation of various pigments. A number of genes that function in the biosynthesis (vermilion, cinnabar, and cardinal) and importation (karmoisin, white, scarlet, and brown) of these pigments, and their precursors, have been identified in diverse species and used as markers for transgenesis and gene editing. To examine their suitability as visible markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for all seven genes were identified. Bioinformatic-based sequence and phylogenetic analyses supported initial annotations as eye coloration genes. Consistent with their proposed role, each of the genes was expressed in adult heads as well as throughout nymphal and adult development. Adult eyes of those injected with double-stranded RNAs (dsRNAs) for karmoisin, vermilion, cinnabar, cardinal, and scarlet were characterized by a red band along the medial margin extending from the rostral terminus to the antenna. In contrast, eyes of insects injected with dsRNAs for both white and brown were a uniform light brown. White knockdown also produced cuticular and behavioral defects. Based on its expression profile and robust visible phenotype, cardinal would likely prove to be the most suitable marker for developing gene editing methods in Lygus species.


Assuntos
Olho/metabolismo , Heterópteros/genética , Heterópteros/fisiologia , Pigmentação/genética , Pigmentos Biológicos/genética , Pigmentos Biológicos/fisiologia , Animais , Proteínas de Insetos/metabolismo , Interferência de RNA , RNA de Cadeia Dupla
6.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225879

RESUMO

As water for agriculture becomes less available in the semi-arid western United States, alternative irrigation strategies such as deficit irrigation may be necessary for continued crop production. Alternative irrigation practices in cotton (Gossypium spp. [Malvales: Valvaceae]) can result in episodic drought stress that alters temperature profiles within the crop canopy. These altered temperatures may influence populations of important pests such as Lygus hesperus Knight. Field studies often associate lower population densities of L. hesperus with limited irrigation. Recent studies of the thermal ecology of L. hesperus egg and nymphal development have demonstrated only subtle effects of the high, variable temperatures typical of moderate drought stress in cotton. However, influences of these conditions on L. hesperus adult reproductive development have not been studied. The reproductive development of L. hesperus adults was examined under constant (±0.2°C) and variable (±8°C) regimes at a low (15°C), moderate (22°C), and high (29°C) daily mean temperatures. No developmental differences were demonstrated between temperature regimes under moderate or high temperatures. At the low temperature, only the times to the occurrence of eggs, filled medial accessory glands, and filling seminal vesicles were shorter under variable regime, compared with the constant temperature. These results suggest that temporary, episodic increases in crop canopy temperatures caused by moderate drought stress are unlikely to impact L. hesperus population growth, and may only promote short-term displacement of adults into adjacent crops with preferable conditions.


Assuntos
Hemípteros/crescimento & desenvolvimento , Maturidade Sexual , Animais , Feminino , Masculino , Temperatura
7.
J Insect Sci ; 19(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753608

RESUMO

Thermal environments of the arid western United States are often harsh compared with the ranges of temperatures favorable for development and survival of crop insect pests. In cotton [Gossypium spp. (Malvales: Malvaceae)], new irrigation practices such as deficit irrigation may impact populations of pest and beneficial arthropods by temporarily altering temperature profiles within the plant canopy. Most information regarding the temperature-dependent development and survival of an important cotton pest, the western tarnished plant bug (Lygus hesperus Knight), is derived from constant temperature studies. We examined the development and survival of L. hesperus nymphs under constant (±0.2°C) and variable (±8°C) temperature regimes at daily mean temperatures of 15, 22, and 29°C. Under the low temperature (15°C), stadium lengths and duration of the nymphal stage were shorter when temperatures were variable compared with a constant temperature. No differences in development times were observed between regimes at the medium temperature (22°C). Except for the first stadium, development times under the high variable temperature regime were longer compared with the high constant regime (29°C). Nymph survival was unaffected by temperature regime except at the lowest temperature, where daily thermal fluctuations substantially improved survival compared with the constant conditions. These results suggest that temporarily increased crop canopy temperatures caused by altered irrigation schemes are unlikely to substantially reduce the growth of L. hesperus populations. However, enhanced nymphal development and survival under low variable temperatures likely contribute to the survival of overwintering L. hesperus in the absence of acute, low-temperature mortality.


Assuntos
Temperatura Baixa , Heterópteros/crescimento & desenvolvimento , Temperatura Alta , Animais , Gossypium/crescimento & desenvolvimento , Longevidade , Ninfa/crescimento & desenvolvimento
8.
J Exp Biol ; 220(Pt 10): 1925-1930, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28314750

RESUMO

Biogenic amines regulate the proximate mechanisms underlying most behavior, including those that contribute to the overall success of complex societies. For honey bees, one crucial set of behaviors contributing to the welfare of a colony is involved with nest thermoregulation. Worker honeybees cool the colony by performing a fanning behavior, the expression of which is largely influenced by response thresholds modulated by the social environment. Here, we examined how changes in biogenic amines affect this group-performed thermoregulatory fanning behavior in honeybees. Concentrations of two biogenic amines, octopamine and tyramine, are significantly lower in active fanners than in non-fanners, but there is no difference in dopamine and serotonin concentrations. Direct feeding of octopamine and tyramine induced a decrease in fanning responses, but only when both amines were included in the treatment. This is the first evidence that fanning behavior is influenced by these two biogenic amines, and this result is consistent with the typical role of these neurotransmitters in regulating locomotor activity in other insects. Individual variation in amine expression also provides a mechanistic link that helps to explain how this group behavior might be coordinated within a colony.


Assuntos
Abelhas/fisiologia , Comportamento Animal/efeitos dos fármacos , Octopamina/farmacologia , Tiramina/farmacologia , Animais , Comportamento Animal/fisiologia , Regulação da Temperatura Corporal , Movimento/efeitos dos fármacos , Octopamina/análise , Comportamento Social , Tiramina/análise
9.
J Exp Biol ; 219(Pt 7): 949-59, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27030775

RESUMO

Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen-worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.


Assuntos
Adaptação Fisiológica/fisiologia , Abelhas/embriologia , Metabolismo Energético/fisiologia , Glicogênio/metabolismo , Larva/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Inanição , Animais , Abelhas/fisiologia , Hormônios Juvenis/metabolismo , Reprodução/fisiologia
10.
Arch Insect Biochem Physiol ; 92(2): 108-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27192063

RESUMO

Vital physiological processes that drive the insect molt represent areas of interest for the development of alternative control strategies. The western tarnished plant bug (Lygus hesperus Knight) is a pest of numerous agronomic and horticultural crops but the development of novel control approaches is impeded by limited knowledge of the mechanisms regulating its molt. To address this deficiency, we examined the fundamental relationship underlying the hormonal and molecular components of ecdysis. At 27°C L. hesperus exhibits a temporally controlled nymph-adult molt that occurs about 4 days after the final nymph-nymph molt with ecdysteroid levels peaking 2 days prior to the final molt. Application of exogenous ecdysteroids when endogenous levels had decreased disrupted the nymphal-adult molt, with treated animals exhibiting an inability to escape the old exoskeleton and resulting in mortality compared to controls. Using accessible transcriptomic data, we identified 10 chitinase-like sequences (LhCht), eight of which had protein motifs consistent with chitinases. Phylogenetic analyses revealed orthologous relationships to chitinases critical to molting in other insects. RT-PCR based transcript profiling revealed that expression changes to four of the LhChts was coordinated with the molt period and ecdysteroid levels. Collectively, our results support a role for ecdysteroid regulation of the L. hesperus molt and suggest that cuticle clearance is mediated by LhCht orthologs of chitinases that are essential to the molt process. These results provide the initial hormonal and molecular basis for future studies to investigate the specific roles of these components in molting.


Assuntos
Quitinases/genética , Ecdisteroides/genética , Regulação da Expressão Gênica no Desenvolvimento , Heterópteros/genética , Proteínas de Insetos/genética , Muda , Transcriptoma , Animais , Quitinases/metabolismo , Ecdisteroides/metabolismo , Heterópteros/crescimento & desenvolvimento , Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/metabolismo , Filogenia
11.
Annu Rev Entomol ; 60: 453-72, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341090

RESUMO

Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait.


Assuntos
Insetos/crescimento & desenvolvimento , Insetos/genética , Fenótipo , Animais , Evolução Biológica , Insetos/anatomia & histologia , Seleção Genética
12.
PLoS Genet ; 8(6): e1002779, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22761585

RESUMO

Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.


Assuntos
Abelhas/genética , Metabolismo dos Carboidratos , Hormônios Juvenis/genética , Percepção Gustatória , Vitelogeninas/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Abelhas/fisiologia , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Metabolismo Energético , Corpo Adiposo/metabolismo , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hormônios de Inseto/metabolismo , Hormônios Juvenis/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , RNA Interferente Pequeno , Percepção Gustatória/genética , Percepção Gustatória/fisiologia , Vitelogeninas/metabolismo
13.
J Exp Biol ; 217(Pt 9): 1496-503, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436385

RESUMO

Dominance rank in animal societies is correlated with changes in both reproductive physiology and behavior. In some social insects, dominance status is used to determine a reproductive division of labor, where a few colony members reproduce while most remain functionally sterile. Changes in reproduction and behavior in this context must be coordinated through crosstalk between the brain and the reproductive system. We investigated a role for biogenic amines in forming this connection in the ant Harpegnathos saltator. In this species, workers engage in an elaborate dominance tournament to establish a group of reproductive workers termed gamergates. We analyzed biogenic amine content in the brains of gamergates, inside-workers and foragers under stable colony conditions and found that gamergates had the highest levels of dopamine. Dopamine levels were also positively correlated with increased ovarian activity among gamergates. Next, we experimentally induced workers to compete in a reproductive tournament to determine how dopamine may be involved in the establishment of a new hierarchy. Dopamine levels rose in aggressive workers at the start of a tournament, while workers that were policed by their nestmates (a behavior that inhibits ovarian activity) showed a rapid decline in dopamine. In addition to dopamine, levels of serotonin and tyramine differed among castes, and these changes could contribute to differences in caste-specific behavioral patterns observed among non-reproductive workers. Overall, these results provide support that biogenic amines link changes in behavior and dominance with reproductive activity in H. saltator as well as drive differences in worker task performance.


Assuntos
Formigas/fisiologia , Neurotransmissores/biossíntese , Reprodução/fisiologia , Predomínio Social , Agressão , Animais , Comportamento Animal/fisiologia , Aminas Biogênicas , Encéfalo/metabolismo , Feminino , Ovário/fisiologia
14.
Insect Biochem Mol Biol ; 166: 104085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307215

RESUMO

In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.


Assuntos
Besouros , Heterópteros , Feminino , Masculino , Animais , Heterópteros/genética , Diferenciação Sexual , Desenvolvimento Sexual
15.
J Insect Physiol ; 152: 104598, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081537

RESUMO

Lygus hesperus Knight is an important insect pest of crops across western North America, with field management heavily reliant on the use of chemical insecticides. Because of the evolution of resistance to these insecticides, effective and environmentally benign pest management strategies are needed. Traditional sterile insect technique (SIT) has been successfully employed to manage or eradicate some insect pests but involves introducing irradiated insects with random mutations into field populations. New genetically-driven SIT techniques are a safer alternative, causing fixed mutations that manipulate individual genes in target pests to produce sterile individuals for release. Here, we identified seven ß-tubulin coding genes from L. hesperus and show that Lhßtub2 is critical in male sperm production and fertility. Lhßtub2 is expressed primarily in the male testes and targeting of this gene by RNA interference or gene editing leads to male sterility.


Assuntos
Heterópteros , Inseticidas , Humanos , Masculino , Animais , Tubulina (Proteína)/genética , Sementes , Heterópteros/genética , Espermatogênese
16.
Horm Behav ; 63(1): 1-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22986338

RESUMO

The evolution of eusociality is hypothesized to have involved de-coupling parental care from reproduction mediated by changes in endocrine regulation. While data for obligately eusocial insects are consistent with this hypothesis, we lack information from species representative of the transition from solitary reproduction to eusociality. Here we report the first evidence for a link between endocrine processes and social behavior in a facultatively eusocial bee, Megalopta genalis (Halictidae). Using females that varied in social, reproductive, and ecological context, we measured juvenile hormone (JH), a major regulator of colony caste dynamics in other eusocial species. JH was low at adult emergence, but elevated after 10 days in all nesting females. Females reared in cages with ad lib nutrition, however, did not elevate JH levels after 10 days. All reproductive females had significantly more JH than all age-matched non-reproductive females, suggesting a gonadotropic function. Among females in established nests, JH was higher in queens than workers and solitary reproductives, suggesting a role for JH in social dominance. A lack of significant differences in JH between solitary reproductives and non-reproductive workers suggests that JH content reflects more than reproductive status. Our data support the hypothesis that endocrine modifications are involved in the evolutionary decoupling of reproductive and somatic effort in social insects. These are the first measurements of JH in a solitary-nesting hymenopteran, and the first to compare eusocial and solitary nesting individuals of the same species.


Assuntos
Abelhas/metabolismo , Comportamento Animal/fisiologia , Hormônios Juvenis/metabolismo , Comportamento Social , Animais , Feminino , Masculino , Espectrometria de Massas , Predomínio Social
17.
J Exp Biol ; 216(Pt 23): 4334-40, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24259256

RESUMO

Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca sexta and Drosophila melanogaster, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis is initiated when larvae attain a critical mass. We hypothesized that oxygen effects on final size might be mediated by oxygen effects on the critical weight and the ecdysone titers, which regulate growth rate and the timing of developmental transitions. Our results showed that oxygen affected critical weight, the basal ecdysone titers and the timing of the ecdysone peak, providing clear evidence that oxygen affected growth rate and developmental rate. Hypoxic third instar larvae (10% oxygen) exhibited a reduced critical weight, slower growth rate, delayed pupariation, elevated baseline ecdysone levels and a delayed ecdysone peak that occurred at a lower larval mass. Hyperoxic larvae exhibited increased basal ecdysone levels, but no change in critical weight compared with normoxic larvae and no significant change in timing of pupariation. Previous studies have shown that nutrition is crucial for regulating growth rate and the timing of developmental transitions. Here we show that oxygen level is one of multiple cues that together regulate adult size and the timing and dynamics of growth, developmental rate and ecdysone signaling.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , Oxigênio/fisiologia , Animais , Tamanho Corporal , Drosophila melanogaster/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia
18.
J Exp Biol ; 215(Pt 3): 454-60, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22246254

RESUMO

In Pogonomyrmex californicus harvester ants, an age-associated division of labor occurs in the worker caste, in which young workers perform in-nest tasks and older workers forage for food. Here, we tested whether this behavioral division is age based or age flexible, and whether it coincides with differential expression of systemic hormones with known roles in behavioral regulation. Whole-body content of juvenile hormone (JH) and ecdysteroids was determined in workers from (1) age-typical colonies, in which a typical age structure is maintained and workers transition across behaviors naturally, and (2) single-cohort colonies, which are entirely composed of same-aged workers, facilitating the establishment of age-independent division of labor. Foragers from both colony types had higher JH and lower ecdysteroid content than workers performing in-nest tasks, suggesting that age is not the sole determinant of worker behavior. This association between hormone content and behavior of P. californicus workers is similar to that previously observed in founding queens of this species. Because these hormones are key regulators of development and reproductive behavior, our data are consistent with the reproductive ground plan hypothesis (RGPH), which posits that the reproductive regulatory mechanisms of solitary ancestors were co-opted to regulate worker behavior.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Sistema Endócrino/fisiologia , Comportamento Social , Animais , Ecdisteroides/análise , Hormônios Juvenis/análise , Reprodução/fisiologia
19.
J Insect Sci ; 12: 136, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23452041

RESUMO

Recent studies on adult diapause in the western tarnished plant bug, Lygus hesperus Knight (Heteroptera: Miridae), have highlighted the need to identify a reliable external marker for the internal changes that differentiate a normal animal from one that is overwintering. To test the efficacy of a color based discrimination system, L. hesperus of both genders were reared from eggs through day 10 of adulthood under a 10 hour photophase at a constant temperature. They were separated into three color groups (yellow, pale green, dark green), then dissected for diapause categorization based on internal development. Most yellow individuals were in diapause, dark green individuals were not, and pale green ones were mixed. A group of 25 assessors, naïve with regard to L. hesperus development, were then asked to use a simplified color criteria (yellow = diapause, green = non-diapause) to estimate the status of a mixture of diapausing and non-diapausing adults of both genders aged two to seven days post-eclosion. After dissection to verify diapause status, assessor accuracy was found to be ineffective for assessing adults of both sexes younger than four days because color differences, which increased with age, were subtle or non-existent at this stage. For four to seven-day-old bugs, 84% of females and 67% of males were correctly categorized, on average. Incorrect assessments in all but the youngest males over-identified diapause, but for females there was no trend in miscategorizations. Overall, the results indicate that diapause status can be adequately discriminated by color assessment, and with greatest accuracy when sampling older females. However, factors other than photoperiod appear to also influence coloration.


Assuntos
Heterópteros/fisiologia , Controle de Insetos/métodos , Envelhecimento , Animais , Cor , Feminino , Hibernação , Masculino , Fotoperíodo , Caracteres Sexuais
20.
J Econ Entomol ; 115(2): 526-538, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024833

RESUMO

The glassy-winged sharpshooter (Homalodisca vitripennis (Germar); Hemiptera: Cicadellidae: Cicadellinae) is an invasive insect that transmits the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadacae). While adult glassy-winged sharpshooter must feed to produce eggs, the role of nutritional status on initiating oogenesis is poorly understood. To determine the effects of glassy-winged sharpshooter nutrition on nymphal development, oogenesis, and fecundity, glassy-winged sharpshooter were reared on cowpea, sunflower, sorghum, and a mixture of the three plant species. Adults emerging from cowpea, sunflower, or plant mixture treatments had shorter development times, attained larger size, and had greater estimated lipid reserves than females reared on sorghum. In choice tests, nymphs avoided sorghum and preferentially fed on cowpea and sunflower. Adult females provisioned with a single plant species during the nymphal stage were provided with either the same host plant species or a mixture of host plant species (cowpea, sunflower, sorghum) for a 9-wk oviposition period, with 37% of females initiating oogenesis. Ovipositing females had greater juvenile hormone and octopamine levels than reproductively inactive females, although topical application of the juvenile hormone analog Methoprene did not promote oogenesis. Across nymphal diets, reproductively active females produced more eggs when held on plant mixtures than on single plant species. In choice tests, adult females were observed most frequently on cowpea, although most eggs were deposited on sorghum, the host least preferred by nymphs. Results suggest that fecundity is largely determined by the quality of the adult diet, although the stimulus that initiates oogenesis does not appear to be related to nutrition.


Assuntos
Helianthus , Hemípteros , Vigna , Animais , Feminino , Hemípteros/fisiologia , Hormônios Juvenis , Ninfa , Oogênese , Oviposição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA