Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(36): 21914-21920, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848065

RESUMO

The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kß X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Humanos , Ferro/química , Ferro/metabolismo , Cinética , Domínios Proteicos , Espectrometria por Raios X , Espectroscopia por Absorção de Raios X
2.
J Chem Phys ; 157(22): 224201, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546808

RESUMO

We present a sub-picosecond resolved investigation of the structural solvent reorganization and geminate recombination dynamics following 400 nm two-photon excitation and photodetachment of a valence p electron from the aqueous atomic solute, I-(aq). The measurements utilized time-resolved X-ray Absorption Near Edge Structure (TR-XANES) spectroscopy and X-ray Solution Scattering (TR-XSS) at the Linac Coherent Light Source x-ray free electron laser in a laser pump/x-ray probe experiment. The XANES measurements around the L1-edge of the generated nascent iodine atoms (I0) yield an average electron ejection distance from the iodine parent of 7.4 ± 1.5 Å with an excitation yield of about 1/3 of the 0.1M NaI aqueous solution. The kinetic traces of the XANES measurement are in agreement with a purely diffusion-driven geminate iodine-electron recombination model without the need for a long-lived (I0:e-) contact pair. Nonequilibrium classical molecular dynamics simulations indicate a delayed response of the caging H2O solvent shell and this is supported by the structural analysis of the XSS data: We identify a two-step process exhibiting a 0.1 ps delayed solvent shell reorganization time within the tight H-bond network and a 0.3 ps time constant for the mean iodine-oxygen distance changes. The results indicate that most of the reorganization can be explained classically by a transition from a hydrophilic cavity with a well-ordered first solvation shell (hydrogens pointing toward I-) to an expanded cavity around I0 with a more random orientation of the H2O molecules in a broadened first solvation shell.

3.
Chemphyschem ; 22(7): 693-700, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410580

RESUMO

Time-resolved X-ray absorption spectroscopy has been utilized to monitor the bimolecular electron transfer in a photocatalytic water splitting system. This has been possible by uniting the local probe and element specific character of X-ray transitions with insights from high-level ab initio calculations. The specific target has been a heteroleptic [IrIII (ppy)2 (bpy)]+ photosensitizer, in combination with triethylamine as a sacrificial reductant and Fe3(CO)12 as a water reduction catalyst. The relevant molecular transitions have been characterized via high-resolution Ir L-edge X-ray absorption spectroscopy on the picosecond time scale and restricted active space self-consistent field calculations. The presented methods and results will enhance our understanding of functionally relevant bimolecular electron transfer reactions and thus will pave the road to rational optimization of photocatalytic performance.

5.
Nature ; 509(7500): 345-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805234

RESUMO

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2'-bipyridine)3](2+), where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)3](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

6.
J Chem Phys ; 152(21): 214301, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505143

RESUMO

Oligonuclear complexes of d4-d7 transition metal ion centers that undergo spin-switching have long been developed for their practical role in molecular electronics. Recently, they also have appeared as promising photochemical reactants demonstrating improved stability. However, the lack of knowledge about their photophysical properties in the solution phase compared to mononuclear complexes is currently hampering their inclusion into advanced light-driven reactions. In the present study, the ultrafast photoinduced dynamics in a solvated [2 × 2] iron(II) metallogrid complex are characterized by combining measurements with transient optical-infrared absorption and x-ray emission spectroscopy on the femtosecond time scale. The analysis is supported by density functional theory calculations. The photocycle can be described in terms of intra-site transitions, where the FeII centers in the low-spin state are independently photoexcited. The Franck-Condon state decays via the formation of a vibrationally hot high-spin (HS) state that displays coherent behavior within a few picoseconds and thermalizes within tens of picoseconds to yield a metastable HS state living for several hundreds of nanoseconds. Systematic comparison with the closely related mononuclear complex [Fe(terpy)2]2+ reveals that nuclearity has a profound impact on the photoinduced dynamics. More generally, this work provides guidelines for expanding the integration of oligonuclear complexes into new photoconversion schemes that may be triggered by ultrafast spin-switching.

7.
J Synchrotron Radiat ; 26(Pt 5): 1432-1447, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490131

RESUMO

The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse-1 and up to 27000 pulses s-1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV-visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5-20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses.


Assuntos
Lasers , Fotoquímica/instrumentação , Espectrometria por Raios X/instrumentação , Calibragem , Desenho de Equipamento , Fótons , Espalhamento de Radiação , Raios X
8.
Inorg Chem ; 58(14): 9341-9350, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241335

RESUMO

We have employed a range of ultrafast X-ray spectroscopies in an effort to characterize the lowest energy excited state of [Fe(dcpp)2]2+ (where dcpp is 2,6-(dicarboxypyridyl)pyridine). This compound exhibits an unusually short excited-state lifetime for a low-spin Fe(II) polypyridyl complex of 270 ps in a room-temperature fluid solution, raising questions as to whether the ligand-field strength of dcpp had pushed this system beyond the 5T2/3T1 crossing point and stabilizing the latter as the lowest energy excited state. Kα and Kß X-ray emission spectroscopies have been used to unambiguously determine the quintet spin multiplicity of the long-lived excited state, thereby establishing the 5T2 state as the lowest energy excited state of this compound. Geometric changes associated with the photoinduced ligand-field state conversion have also been monitored with extended X-ray absorption fine structure. The data show the typical average Fe-ligand bond length elongation of ∼0.18 Å for a 5T2 state and suggest a high anisotropy of the primary coordination sphere around the metal center in the excited 5T2 state, in stark contrast to the nearly perfect octahedral symmetry that characterizes the low-spin 1A1 ground state structure. This study illustrates how the application of time-resolved X-ray techniques can provide insights into the electronic structures of molecules-in particular, transition metal complexes-that are difficult if not impossible to obtain by other means.

9.
Phys Chem Chem Phys ; 20(9): 6274-6286, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29431759

RESUMO

The structural dynamics of charge-transfer states of nitrogen-ligated copper complexes has been extensively investigated in recent years following the development of pump-probe X-ray techniques. In this study we extend this approach towards copper complexes with sulfur coordination and investigate the influence of charge transfer states on the structure of a dicopper(i) complex with coordination by bridging disulfide ligands and additionally tetramethylguanidine units [CuI2(NSSN)2]2+. In order to directly observe and refine the photoinduced structural changes in the solvated complex we applied picosecond pump-probe X-ray absorption spectroscopy (XAS) and wide-angle X-ray scattering (WAXS). Additionally, the ultrafast evolution of the electronic excited states was monitored by femtosecond transient absorption spectroscopy in the UV-Vis probe range. DFT calculations were used to predict molecular geometries and electronic structures of the ground and metal-to-ligand charge transfer states with singlet and triplet spin multiplicities, i.e. S0, 1MLCT and 3MLCT, respectively. Combining these techniques we elucidate the electronic and structural dynamics of the solvated complex upon photoexcitation to the MLCT states. In particular, femtosecond optical transient spectroscopy reveals three distinct timescales of 650 fs, 10 ps and >100 ps, which were assigned as internal conversion to the ground state (Sn → S0), intersystem crossing 1MLCT → 3MLCT, and subsequent relaxation of the triplet to the ground state, respectively. Experimental data collected using both X-ray techniques are in agreement with the DFT-predicted structure for the triplet state, where coordination bond lengths change and one of the S-S bridges is cleaved, causing the movement of two halves of the molecule relative to each other. Extended X-ray absorption fine structure spectroscopy resolves changes in Cu-ligand bond lengths with precision on the order of 0.01 Å, whereas WAXS is sensitive to changes in the global shape related to relative movement of parts of the molecule. The results presented herein widen the knowledge on the electronic and structural dynamics of photoexcited copper-sulfur complexes and demonstrate the potential of combining the pump-probe X-ray absorption and scattering for studies on photoinduced structural dynamics in copper-based coordination complexes.

11.
J Synchrotron Radiat ; 23(Pt 6): 1409-1423, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787247

RESUMO

The technical implementation of a multi-MHz data acquisition scheme for laser-X-ray pump-probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high-repetition rates of X-ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60-bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X-ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12-bit resolution. These traces are then processed to deliver an integrated value for each recorded single X-ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single-shot values are averaged over ∼107 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X-ray probe energy. The sensitivity reaches down to the shot-noise limit, and signal-to-noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse-1 and is only technically limited by the utilized APD.

12.
Phys Rev Lett ; 117(1): 013002, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419566

RESUMO

We study the structural dynamics of photoexcited [Co(terpy)_{2}]^{2+} in an aqueous solution with ultrafast x-ray diffuse scattering experiments conducted at the Linac Coherent Light Source. Through direct comparisons with density functional theory calculations, our analysis shows that the photoexcitation event leads to elongation of the Co-N bonds, followed by coherent Co-N bond length oscillations arising from the impulsive excitation of a vibrational mode dominated by the symmetrical stretch of all six Co-N bonds. This mode has a period of 0.33 ps and decays on a subpicosecond time scale. We find that the equilibrium bond-elongated structure of the high spin state is established on a single-picosecond time scale and that this state has a lifetime of ∼7 ps.

13.
Phys Chem Chem Phys ; 17(36): 23298-302, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26300122

RESUMO

Identifying the intermediate species along a reaction pathway is a first step towards a complete understanding of the reaction mechanism, but often this task is not trivial. There has been a strong on-going debate: which of the three intermediates, the CHI2 radical, the CHI2-I isomer, and the CHI2(+) ion, is the dominant intermediate species formed in the photolysis of iodoform (CHI3)? Herein, by combining time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TR-XAS), we present strong evidence that the CHI2 radical is dominantly formed from the photolysis of CHI3 in methanol at 267 nm within the available time resolution of the techniques (∼20 ps for TRXL and ∼100 ps for TR-XAS). The TRXL measurement, conducted using the time-slicing scheme, detected no CHI2-I isomer within our signal-to-noise ratio, indicating that, if formed, the CHI2-I isomer must be a minor intermediate. The TR-XAS transient spectra measured at the iodine L1 and L3 edges support the same conclusion. The present work demonstrates that the application of these two complementary time-resolved X-ray methods to the same system can provide a detailed understanding of the reaction mechanism.

14.
Opt Express ; 22(12): 14964-74, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977590

RESUMO

We report on the development of a 2 MHz non collinear optical parametric amplifier (NOPA) for high repetition rate time resolved X-ray or optical spectroscopy. Our modular and very flexible device is pumped by the second and third harmonics of a commercial femtosecond Ytterbium-doped fiber laser. The amplified pulses are tunable from 520 nm to 1000 nm with pulse durations between 15 and 30 fs over the full tuning range. The same setup is also suitable for broadband amplification and we demonstrate the generation of 6 fs pulses at a central wavelength of 850 nm as well as the generation of a broadband spectrum supporting 4.2 fs transform limited pulse duration at a central wavelength of 570 nm. Very high stability and compactness is achieved thanks to an optimized mechanical design.

15.
J Phys Chem Lett ; 15(13): 3627-3638, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530393

RESUMO

Metalloporphyrins with open d-shell ions can drive biochemical energy cycles. However, their utilization in photoconversion is hampered by rapid deactivation. Mapping the relaxation pathways is essential for elaborating strategies that can favorably alter the charge dynamics through chemical design and photoexcitation conditions. Here, we combine transient optical absorption spectroscopy and transient X-ray emission spectroscopy with femtosecond resolution to probe directly the coupled electronic and spin dynamics within a photoexcited nickel porphyrin in solution. Measurements and calculations reveal that a state with charge-transfer character mediates the formation of the thermalized excited state, thereby advancing the description of the photocycle for this important representative molecule. More generally, establishing that intramolecular charge-transfer steps play a role in the photoinduced dynamics of metalloporphyrins with open d-shell sets a conceptual ground for their development as building blocks capable of boosting nonadiabatic photoconversion in functional architectures through "hot" charge transfer down to the attosecond time scale.

16.
J Phys Chem A ; 117(4): 735-40, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23281652

RESUMO

X-ray free electron lasers (XFELs) deliver short (<100 fs) and intense (∼10(12) photons) pulses of hard X-rays, making them excellent sources for time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring high-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics convoluted with the overall time resolution. The resulting time constant is ∼160 fs.

17.
J Phys Chem B ; 127(6): 1399-1413, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36728132

RESUMO

Electron transfer reactions can be strongly influenced by solvent dynamics. We study the photoionization of halides in water as a model system for such reactions. There are no internal nuclear degrees of freedom in the solute, allowing the dynamics of the solvent to be uniquely identified. We simulate the equilibrium solvent dynamics for Cl-, Br-, I-, and their respective neutral atoms in water, comparing quantum mechanical/molecular mechanical (QM/MM) and classical molecular dynamics (MD) methods. On the basis of the obtained configurations, we calculate the extended X-ray absorption fine structure (EXAFS) spectra rigorously based on the MD snapshots and compare them in detail with other theoretical and experimental results available in the literature. We find our EXAFS spectra based on QM/MM MD simulations in good agreement with their experimental counterparts for the ions. Classical MD simulations for the ions lead to EXAFS spectra that agree equally well with the experiment when it comes to the oscillatory period of the signal, even though they differ from the QM/MM radial distribution functions extracted from the MD. The amplitude is, however, considerably overestimated. This suggests that to judge the reliability of theoretical simulation methods or to elucidate fine details of the atomistic dynamics of the solvent based on EXAFS spectra, the amplitude as well as the oscillatory period need to be considered. If simulations fail qualitatively, as does the classical MD for the aqueous neutral halogen atoms, the resulting EXAFS will also be strongly affected in both oscillatory period and amplitude. The good reliability of QM/MM-based EXAFS simulations, together with clear qualitative differences in the EXAFS spectra found between halides and their atomic counterparts, suggests that a combined theory and experimental EXAFS approach is suitable for elucidating the nonequilibrium solvent dynamics in the photoionization of halides and possibly also for electron transfer reactions in more complex systems.

18.
Nat Commun ; 14(1): 2495, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120432

RESUMO

X-ray free-electron laser sources enable time-resolved X-ray studies with unmatched temporal resolution. To fully exploit ultrashort X-ray pulses, timing tools are essential. However, new high repetition rate X-ray facilities present challenges for currently used timing tool schemes. Here we address this issue by demonstrating a sensitive timing tool scheme to enhance experimental time resolution in pump-probe experiments at very high pulse repetition rates. Our method employs a self-referenced detection scheme using a time-sheared chirped optical pulse traversing an X-ray stimulated diamond plate. By formulating an effective medium theory, we confirm subtle refractive index changes, induced by sub-milli-Joule intense X-ray pulses, that are measured in our experiment. The system utilizes a Common-Path-Interferometer to detect X-ray-induced phase shifts of the optical probe pulse transmitted through the diamond sample. Owing to the thermal stability of diamond, our approach is well-suited for MHz pulse repetition rates in superconducting linear accelerator-based free-electron lasers.

19.
J Phys Chem Lett ; 14(9): 2425-2432, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36862109

RESUMO

We report femtosecond Fe K-edge absorption (XAS) and nonresonant X-ray emission (XES) spectra of ferric cytochrome C (Cyt c) upon excitation of the haem (>300 nm) or mixed excitation of the haem and tryptophan (<300 nm). The XAS and XES transients obtained in both excitation energy ranges show no evidence for electron transfer processes between photoexcited tryptophan (Trp) and the haem, but rather an ultrafast energy transfer, in agreement with previous ultrafast optical fluorescence and transient absorption studies. The reported (J. Phys. Chem. B 2011, 115 (46), 13723-13730) decay times of Trp fluorescence in ferrous (∼350 fs) and ferric (∼700 fs) Cyt c are among the shortest ever reported for Trp in a protein. The observed time scales cannot be rationalized in terms of Förster or Dexter energy transfer mechanisms and call for a more thorough theoretical investigation.


Assuntos
Citocromos c , Heme , Heme/metabolismo , Triptofano , Transporte de Elétrons , Transferência de Energia , Ferro
20.
J Am Chem Soc ; 133(32): 12740-8, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21740023

RESUMO

Picosecond and femtosecond X-ray absorption spectroscopy is used to probe the changes of the solvent shell structure upon electron abstraction of aqueous iodide using an ultrashort laser pulse. The transient L(1,3) edge EXAFS at 50 ps time delay points to the formation of an expanded water cavity around the iodine atom, in good agreement with classical and quantum mechanical/molecular mechanics (QM/MM) molecular dynamics (MD) simulations. These also show that while the hydrogen atoms pointed toward iodide, they predominantly point toward the bulk solvent in the case of iodine, suggesting a hydrophobic behavior. This is further confirmed by quantum chemical (QC) calculations of I(-)/I(0)(H(2)O)(n=1-4) clusters. The L(1) edge sub-picosecond spectra point to the existence of a transient species that is not present at 50 ps. The QC calculations and the QM/MM MD simulations identify this transient species as an I(0)(OH(2)) complex inside the cavity. The simulations show that upon electron abstraction most of the water molecules move away from iodine, while one comes closer to form the complex that lives for 3-4 ps. This time is governed by the reorganization of the main solvation shell, basically the time it takes for the water molecules to reform an H-bond network. Only then is the interaction with the solvation shell strong enough to pull the water molecule of the complex toward the bulk solvent. Overall, much of the behavior at early times is determined by the reorientational dynamics of water molecules and the formation of a complete network of hydrogen bonded molecules in the first solvation shell.


Assuntos
Iodetos/química , Iodo/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Teoria Quântica , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA