Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38691660

RESUMO

SNPs in the FAM13A locus are amongst the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases, however the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: 'long' and 'short', but their functions remain unknown, partly due to a lack of isoform conservation in mice. We performed in-depth characterisation of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate RhoGAP activity of this domain. In Xenopus laevis, which conserve the long isoform, Fam13a-deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long isoform deficiency did not affect multiciliogenesis but reduced cilia co-ordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform co-ordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
J Biol Chem ; 297(2): 100928, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34274316

RESUMO

B-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens. The corepressor binding groove in the BTB-POZ domain is a potential target for small compound-mediated therapy. Several inhibitors targeting this binding groove have been described, but these compounds have limited or absent in vivo activity. Biophysical studies of a novel compound, GSK137, showed an in vitro pIC50 of 8 and a cellular pIC50 of 7.3 for blocking binding of a peptide derived from the corepressor silencing mediator for retinoid or thyroid hormone receptors to the BCL6 BTB-POZ domain. The compound has good solubility (128 µg/ml) and permeability (86 nM/s). GSK137 caused little change in cell viability or proliferation in four BCL6-expressing B-cell lymphoma lines, although there was modest dose-dependent accumulation of G1 phase cells. Pharmacokinetic studies in mice showed a profile compatible with achieving good levels of target engagement. GSK137, administered orally, suppressed immunoglobulin G responses and reduced numbers of germinal centers and germinal center B cells following immunization of mice with the hapten trinitrophenol. Overall, we report a novel small-molecule BCL6 inhibitor with in vivo activity that inhibits the T-dependent antigen immune response.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-6 , Animais , Linfócitos B/metabolismo , Humanos , Camundongos , Transcrição Gênica , Dedos de Zinco
3.
Nature ; 488(7411): 404-8, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22842901

RESUMO

The jumonji (JMJ) family of histone demethylases are Fe2+- and α-ketoglutarate-dependent oxygenases that are essential components of regulatory transcriptional chromatin complexes. These enzymes demethylate lysine residues in histones in a methylation-state and sequence-specific context. Considerable effort has been devoted to gaining a mechanistic understanding of the roles of histone lysine demethylases in eukaryotic transcription, genome integrity and epigenetic inheritance, as well as in development, physiology and disease. However, because of the absence of any selective inhibitors, the relevance of the demethylase activity of JMJ enzymes in regulating cellular responses remains poorly understood. Here we present a structure-guided small-molecule and chemoproteomics approach to elucidating the functional role of the H3K27me3-specific demethylase subfamily (KDM6 subfamily members JMJD3 and UTX). The liganded structures of human and mouse JMJD3 provide novel insight into the specificity determinants for cofactor, substrate and inhibitor recognition by the KDM6 subfamily of demethylases. We exploited these structural features to generate the first small-molecule catalytic site inhibitor that is selective for the H3K27me3-specific JMJ subfamily. We demonstrate that this inhibitor binds in a novel manner and reduces lipopolysaccharide-induced proinflammatory cytokine production by human primary macrophages, a process that depends on both JMJD3 and UTX. Our results resolve the ambiguity associated with the catalytic function of H3K27-specific JMJs in regulating disease-relevant inflammatory responses and provide encouragement for designing small-molecule inhibitors to allow selective pharmacological intervention across the JMJ family.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Sequência de Aminoácidos , Animais , Biocatálise/efeitos dos fármacos , Domínio Catalítico , Células Cultivadas , Inibidores Enzimáticos/metabolismo , Evolução Molecular , Histonas/química , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/classificação , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Macrófagos/enzimologia , Macrófagos/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Modelos Moleculares , Especificidade por Substrato , Fator de Necrose Tumoral alfa/biossíntese
4.
Bioorg Med Chem ; 23(21): 7000-6, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26455654

RESUMO

Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (ß,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Inibidores de Proteínas Quinases/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Cinética , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
6.
J Biol Chem ; 288(30): 22080-95, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23709268

RESUMO

Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and ß-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Citocromos b5/química , Modelos Moleculares , Complexos Multiproteicos/química , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Sítios de Ligação/genética , Biocatálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Transporte de Elétrons/genética , Heme/análogos & derivados , Heme/química , Heme/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Cell Chem Biol ; 29(1): 19-29.e6, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34038748

RESUMO

Interleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rß1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-tagged full-length proteins. Here, we demonstrate that TAMRA-tagged IL-23 has a greater than 7-fold higher affinity for IL12Rß1 than IL23R. However, in the presence of both receptor subunits, IL-23 affinity is increased more than three orders of magnitude to 27 pM. Furthermore, we show that IL-23 induces a potent change in the position of the N-terminal domains of the two receptor subunits, consistent with a conformational change in the heteromeric receptor structure.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Interleucina-23/imunologia , Luciferases/imunologia , Receptores de Interleucina/imunologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Interleucina-23/química , Luciferases/metabolismo , Ligação Proteica , Receptores de Interleucina/química
9.
Front Immunol ; 13: 968206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148231

RESUMO

Myasthenia Gravis (MG) is mediated by autoantibodies against acetylcholine receptors that cause loss of the receptors in the neuromuscular junction. Eculizumab, a C5-inhibitor, is the only approved treatment for MG that mechanistically addresses complement-mediated loss of nicotinic acetylcholine receptors. It is an expensive drug and was approved despite missing the primary efficacy endpoint in the Phase 3 REGAIN study. There are two observations to highlight. Firstly, further C5 inhibitors are in clinical development, but other terminal pathway proteins, such as C7, have been relatively understudied as therapeutic targets, despite the potential for lower and less frequent dosing. Secondly, given the known heterogenous mechanisms of action of autoantibodies in MG, effective patient stratification in the REGAIN trial may have provided more favorable efficacy readouts. We investigated C7 as a target and assessed the in vitro function, binding epitopes and mechanism of action of three mAbs against C7. We found the mAbs were human, cynomolgus monkey and/or rat cross-reactive and each had a distinct, novel mechanism of C7 inhibition. TPP1820 was effective in preventing experimental MG in rats in both prophylactic and therapeutic dosing regimens. To enable identification of MG patients that are likely to respond to C7 inhibition, we developed a patient stratification assay and showed in a small cohort of MG patients (n=19) that 63% had significant complement activation and C7-dependent loss of AChRs in this in vitro set up. This study provides validation of C7 as a target for treatment of MG and provides a means of identifying patients likely to respond to anti-C7 therapy based on complement-activating properties of patient autoantibodies.


Assuntos
Antineoplásicos Imunológicos , Miastenia Gravis Autoimune Experimental , Receptores Nicotínicos , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Autoanticorpos/metabolismo , Proteínas do Sistema Complemento/metabolismo , Epitopos , Humanos , Macaca fascicularis , Nicotina , Ratos , Receptores Colinérgicos
11.
Pharmacol Res Perspect ; 7(6): e00547, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832205

RESUMO

Activation of MrgX2, an orphan G protein-coupled receptor expressed on mast cells, leads to degranulation and histamine release. Human MrgX2 binds promiscuously to structurally diverse peptides and small molecules that tend to have basic properties (basic secretagogues), resulting in acute histamine-like adverse drug reactions of injected therapeutic agents. We set out to identify MrgX2 orthologues from other mammalian species used in nonclinical stages of drug development. Previously, the only known orthologue of human MrgX2 was from mouse, encoded by Mrgprb2. MrgX2 genes of rat, dog (beagle), minipig, pig, and Rhesus and cynomolgus monkey were identified by bioinformatic approaches and verified by their ability to mediate calcium mobilization in transfected cells in response to the classical MrgX2 agonist, compound 48/80. The peptide GSK3212448 is an inhibitor of the PRC2 epigenetic regulator that caused profound anaphylactoid reactions upon intravenous infusion to rat. We showed GSK3212448 to be a potent MrgX2 agonist particularly at rat MrgX2. We screened sets of drug-like molecules and peptides to confirm the highly promiscuous nature of MrgX2. Approximately 20% of drug-like molecules activated MrgX2 (pEC50 ranging from 4.5 to 6), with the principle determinant being basicity. All peptides tested of net charge +3 or greater exhibited agonist activity, including the cell penetrating peptides polyarginine (acetyl-Arg9-amide) and TAT (49-60), a fragment of HIV-1 TAT protein. Finally, we showed that the glycopeptide antibiotic vancomycin, which is associated with clinical pseudo-allergic reactions known as red man syndrome, is an agonist of MrgX2.


Assuntos
Anafilaxia/induzido quimicamente , Mastócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/agonistas , Fragmentos de Peptídeos/efeitos adversos , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropeptídeos/agonistas , Vancomicina/efeitos adversos , Anafilaxia/imunologia , Animais , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/efeitos adversos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/efeitos adversos , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Mastócitos/imunologia , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/imunologia , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Síndrome , Vancomicina/administração & dosagem , p-Metoxi-N-metilfenetilamina/farmacologia
12.
J Med Chem ; 62(16): 7506-7525, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31398032

RESUMO

The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Domínios Proteicos , Bibliotecas de Moléculas Pequenas/farmacologia , ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Fenômenos Biofísicos , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
13.
Neurosci Lett ; 673: 44-50, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29499308

RESUMO

Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation and HTT expression in cultures of cerebellar granule neurones derived from HdhQ111/Q7 mice. This data serves to validate this pathway and paves the way for the discovery of small molecule inhibitors of this interaction as potential therapies for HD.


Assuntos
Proteína Huntingtina/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Animais , Células HEK293 , Humanos , Proteína Huntingtina/genética , Camundongos , Mutação , Cultura Primária de Células , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Ubiquitina-Proteína Ligases
14.
ACS Nano ; 11(8): 7901-7914, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28686416

RESUMO

An ability to organize and encapsulate multiple active proteins into defined objects and spaces at the nanoscale has potential applications in biotechnology, nanotechnology, and synthetic biology. Previously, we have described the design, assembly, and characterization of peptide-based self-assembled cages (SAGEs). These ≈100 nm particles comprise thousands of copies of de novo designed peptide-based hubs that array into a hexagonal network and close to give caged structures. Here, we show that, when fused to the designed peptides, various natural proteins can be co-assembled into SAGE particles. We call these constructs pSAGE for protein-SAGE. These particles tolerate the incorporation of multiple copies of folded proteins fused to either the N or the C termini of the hubs, which modeling indicates form the external and internal surfaces of the particles, respectively. Up to 15% of the hubs can be functionalized without compromising the integrity of the pSAGEs. This corresponds to hundreds of copies giving mM local concentrations of protein in the particles. Moreover, and illustrating the modularity of the SAGE system, we show that multiple different proteins can be assembled simultaneously into the same particle. As the peptide-protein fusions are made via recombinant expression of synthetic genes, we envisage that pSAGE systems could be developed modularly to actively encapsulate or to present a wide variety of functional proteins, allowing them to be developed as nanoreactors through the immobilization of enzyme cascades or as vehicles for presenting whole antigenic proteins as synthetic vaccine platforms.


Assuntos
Peptídeos/química , Proteínas/química , Biologia Sintética/métodos , Biotecnologia , Nanotecnologia/métodos , Dobramento de Proteína
15.
Structure ; 12(6): 1067-77, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15274926

RESUMO

Mitogen and stress-activated kinase-1 (MSK1) is a serine/threonine protein kinase that is activated by either p38 or p42ERK MAPKs in response to stress or mitogenic extracellular stimuli. MSK1 belongs to a family of protein kinases that contain two distinct kinase domains in one polypeptide chain. We report the 1.8 A crystal structure of the N-terminal kinase domain of MSK1. The crystal structure reveals a unique inactive conformation with the ATP binding site blocked by the nucleotide binding loop. This inactive conformation is stabilized by the formation of a new three-stranded beta sheet on the N lobe of the kinase domain. The three beta strands come from residues at the N terminus of the kinase domain, what would be the alphaB helix in the active conformation, and the activation loop. The new three-stranded beta sheet occupies a position equivalent to the N terminus of the alphaC helix in active protein kinases.


Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insetos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas Quinases p38 Ativadas por Mitógeno
16.
J Med Chem ; 58(14): 5649-73, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26155854

RESUMO

Overexpression of ATAD2 (ATPase family, AAA domain containing 2) has been linked to disease severity and progression in a wide range of cancers, and is implicated in the regulation of several drivers of cancer growth. Little is known of the dependence of these effects upon the ATAD2 bromodomain, which has been categorized as among the least tractable of its class. The absence of any potent, selective inhibitors limits clear understanding of the therapeutic potential of the bromodomain. Here, we describe the discovery of a hit from a fragment-based targeted array. Optimization of this produced the first known micromolar inhibitors of the ATAD2 bromodomain.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Quinolonas/química , Quinolonas/farmacologia
17.
Antioxid Redox Signal ; 23(5): 358-74, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26135714

RESUMO

AIMS: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.


Assuntos
Aminopiridinas/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Sulfonamidas/farmacologia , Aminopiridinas/química , Animais , Células Cultivadas , Inibidores Enzimáticos/uso terapêutico , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/química
18.
J Med Chem ; 46(19): 4070-86, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12954060

RESUMO

We describe here a classical molecular modeling exercise that was carried out to provide a basis for the design of novel antagonist ligands of the CCR2 receptor. Using a theoretical model of the CCR2 receptor, docking studies were carried out to define plausible binding modes for the various known antagonist ligands, including our own series of indole piperidine compounds. On the basis of these results, a number of site-directed mutations (SDM) were designed that were intended to verify the proposed docking models. From these it was clear that further refinements would be necessary in the model. This was aided by the publication of a crystal structure of bovine rhodopsin, and a new receptor model was built by homology to this structure. This latest model enabled us to define ligand-docking hypotheses that were in complete agreement with the results of the SDM experiments.


Assuntos
Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Células CHO , Bovinos , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Cricetinae , Humanos , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Cinética , Modelos Moleculares , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Mutagênese Sítio-Dirigida , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacologia , Ensaio Radioligante , Receptores CCR2 , Receptores de Quimiocinas/química , Receptores de Quimiocinas/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/química , Rodopsina/genética , Homologia Estrutural de Proteína , Transfecção
19.
J Biotechnol ; 109(1-2): 201-11, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15063628

RESUMO

Building on the basic design concepts of Randers-Eichhorn [Biotechnol. Bioeng. 55 (1997) 921], an on-line, real-time robust, steam sterilisable optical sensor for monitoring green fluorescent protein (GFP) has been developed. A general cloning vector for fusion expression proteins was constructed, allowing expression of both GFP and the target protein as a fusion. Cultivations were carried out at the 20l scale with the signal from the sensor being relayed directly to the control system of the bioreactors. The production of GFP was then measured on-line, the signal was interfaced directly with other controlling parameters, thereby allowing the microbial process to be controlled directly based on recombinant protein expression. A positive expression correlation between on-line and off-line data was obtained. Protein accretion measured off-line was quantified using both LC-MS and plate reader assays. The potential of such a sensor for many aspects of process development is considerable and we have developed a working system which allows the optimisation of production conditions, for example, linking pH control directly to the fusion protein. Results are also presented that illustrate GFP does not alter the cultivation characteristics of the target protein when compared to the native construct. Whether GFP expressed as a fusion influences the solubility of the target protein is also discussed.


Assuntos
Técnicas Biossensoriais/instrumentação , Fermentação , Vetores Genéticos/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/biossíntese
20.
J Biomol Screen ; 19(2): 278-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23896685

RESUMO

Using mass spectrometry to detect enzymatic activity offers several advantages over fluorescence-based methods. Automation of sample handling and analysis using platforms such as the RapidFire (Agilent Technologies, Lexington, MA) has made these assays amenable to medium-throughput screening (of the order of 100,000 wells). However, true high-throughput screens (HTS) of large compound collections (>1 million) are still considered too time-consuming to be feasible. Here we propose a simple multiplexing strategy that can be used to increase the throughput of RapidFire, making it viable for HTS. The method relies on the ability to analyze pooled samples from several reactions simultaneously and to deconvolute their origin using "mass-tagged" substrates. Using the JmjD2d H3K9me3 demethylase as a model system, we demonstrate the practicality of this method to achieve a 4-fold increase in throughput. This was achieved without any loss of assay quality. This multiplex strategy could easily be scaled to give even greater reductions in analysis time.


Assuntos
Ensaios de Triagem em Larga Escala , Histona Desmetilases com o Domínio Jumonji/metabolismo , Espectrometria de Massas/métodos , Epigenômica , Humanos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA