Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pharm Res ; 40(9): 2103-2106, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37349651

RESUMO

The goal of pharmacovigilance (PV) is to prevent adverse events (AEs) associated with drugs and vaccines. Current PV programs are of a reactive nature and rest entirely on data science, i.e., detecting and analyzing AE data from provider/patient reports, health records and even social media. The ensuing preventive actions are too late for people who have experienced AEs and often overly broad, as responses include entire product withdrawals, batch recalls, or contraindications of subpopulations. To prevent AEs in a timely and precise manner, it is necessary to go beyond data science and incorporate measurement science into PV efforts through person-level patient screening and dose-level product surveillance. Measurement-based PV may be called 'preventive pharmacovigilance', the goal of which is to identify susceptible individuals and defective doses to prevent AEs. A comprehensive PV program should contain both reactive and preventive components by integrating data science and measurement science.


Assuntos
Farmacovigilância , Vacinas , Humanos , Vacinas/efeitos adversos
2.
Pharm Res ; 40(6): 1435-1446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36414838

RESUMO

This study applies an emerging analytical technology, wNMR (water proton nuclear magnetic resonance), to assess the stability of aluminum adjuvants and antigen-adjuvant complexes against physical stresses, including gravitation, flow and freeze/thaw. Results from wNMR are verified by conventional analytical technologies, including static light scattering and microfluidic imaging. The results show that wNMR can quickly and noninvasively determine whether an aluminum adjuvant or antigen-adjuvant complex sample has been altered by physical stresses.


Assuntos
Adjuvantes Imunológicos , Alumínio , Alumínio/química , Adjuvantes Imunológicos/química , Antígenos/química
3.
Pharm Res ; 38(1): 3-7, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33555493

RESUMO

Biologics are complex pharmaceuticals that include formulated proteins, plasma products, vaccines, cell and gene therapy products, and biological tissues. These products are fragile and typically require cold chain for their delivery and storage. Delivering biologics, while maintaining the cold chain, whether standard (2°C to 8°C) or deepfreeze (as cold as -70°C), requires extensive infrastructure that is expensive to build and maintain. This poses a huge challenge to equitable healthcare delivery, especially during a global pandemic. Even when the infrastructure is in place, breaches of the cold chain are common. Such breaches may damage the product, making therapeutics and vaccines ineffective or even harmful. Rather than strengthening the cold chain through building more infrastructure and imposing more stringent guidelines, we suggest that money and effort are best spent on making the cold chain unnecessary for biologics delivery and storage. To meet this grand challenge in pharmaceutical research, we highlight areas where innovations are needed in the design, formulation and biomanufacturing of biologics, including point-of-care manufacturing and inspection. These technological innovations would rely on fundamental advances in our understanding of biomolecules and cells.


Assuntos
Produtos Biológicos/normas , COVID-19/terapia , Pesquisa Farmacêutica/normas , Refrigeração/normas , Produtos Biológicos/uso terapêutico , COVID-19/epidemiologia , Humanos , Pesquisa Farmacêutica/tendências , Refrigeração/tendências , Vacinas/normas , Vacinas/uso terapêutico
4.
Anal Chem ; 91(21): 13538-13546, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550145

RESUMO

Continuous manufacturing of biologics is one of the priorities of the biopharmaceutical industry. However, its widespread implementation is hampered by a lack of noninvasive/nondestructive process analytical technology (PAT) systems capable of real-time in-line monitoring of product flow parameters, such as concentration and/or aggregate content. We have previously demonstrated that, under nonflow conditions, the water proton transverse relaxation rate, R2(1H2O), is sensitive to protein concentration and aggregate content in biopharmaceutical formulations. In the present work, we explored the potential of water proton NMR under flow conditions (flow-wNMR) to use R2(1H2O) as a quantitative indicator of protein concentration variations and aggregate levels in the process flow. We show that, under flow conditions, R2(1H2O) is sensitive to rather small changes in protein concentration (<1 mg/mL) and is capable to detect variations in the aggregate content of <1%. Our findings suggest that flow-wNMR could be advantageously used as a real-time in-line noninvasive PAT for continuous biomanufacturing.


Assuntos
Espectroscopia de Prótons por Ressonância Magnética/métodos , Tecnologia Farmacêutica , Água/química , Cromatografia em Gel , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Soroalbumina Bovina/química
5.
Magn Reson Chem ; 57(10): 861-872, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30746779

RESUMO

The conformational transition of a fluorinated amphiphilic dendrimer is monitored by the 1 H signal from water, alongside the 19 F signal from the dendrimer. High-field NMR data (chemical shift δ, self-diffusion coefficient D, longitudinal relaxation rate R1 , and transverse relaxation rate R2 ) for both dendrimer (19 F) and water (1 H) match each other in detecting the conformational transition. Among all parameters for both nuclei, the water proton transverse-relaxation rate R2 (1 H2 O) displays the highest relative scale of change upon conformational transition of the dendrimer. Hydrogen/deuterium-exchange mass spectrometry reveals that the compact form of the dendrimer has slower proton exchange with water than the extended form. This result suggests that the sensitivity of R2 (1 H2 O) toward dendrimer conformation originates, at least partially, from the difference in proton exchange efficiency between different dendrimer conformations. Finally, we also demonstrated that this conformational transition could be conveniently monitored using a low-field benchtop NMR spectrometer via R2 (1 H2 O). The 1 H2 O signal thus offers a simple way to monitor structural changes of macromolecules using benchtop time-domain NMR.

6.
AAPS PharmSciTech ; 20(5): 189, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31111256

RESUMO

Batch-level inference-based quality control is the standard practice for drug products. However, rare drug product defects may be missed by batch-level statistical sampling, where a subset of vials in a batch is tested quantitatively but destructively. In 2013, a suspension insulin product, NovoLog® Mix 70/30 was recalled due to a manufacturing error, which resulted in insulin strength deviations up to 50% from the labeled value. This study analyzed currently marketed FlexPen® devices by the water proton transverse relaxation rate using a benchtop nuclear magnetic resonance relaxometer. The water proton transverse relaxation rate was found to be sensitive to detecting concentration changes of the FlexPen® product. These findings support the development of vial-level verification-based quality control for drug products where every vial in a batch is inspected quantitatively but nondestructively.


Assuntos
Insulinas Bifásicas/análise , Insulina Aspart/análise , Insulina Isófana/análise , Espectroscopia de Ressonância Magnética/métodos , Insulinas Bifásicas/química , Insulinas Bifásicas/normas , Insulina Aspart/química , Insulina Aspart/normas , Insulina Isófana/química , Insulina Isófana/normas , Prótons , Controle de Qualidade , Água/química
7.
AAPS PharmSciTech ; 20(5): 214, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31172314

RESUMO

Typesetting error occurred and author corrections to the equations and text edits at the proofing stage were not incorporated in the published article. The original article has been corrected.

10.
Biophys J ; 111(2): 294-300, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27463132

RESUMO

Lithium carbonate, a drug for the treatment of bipolar disorder, provides mood stability to mitigate recurrent episodes of mania and/or depression. Despite its long-term and widespread use, the mechanism by which lithium acts to elicit these psychological changes has remained unknown. Using nuclear magnetic resonance (NMR) methods, in this study we characterized the association of lithium with adenosine triphosphate (ATP) and identified a bimetallic (Mg·Li) ATP complex. Lithium's affinity to form this complex was found to be relatively high (Kd ∼1.6 mM) compared with other monovalent cations and relevant, considering lithium dosing and physiological concentrations of Mg(2+) and ATP. The ATP·Mg·Li complex reveals, for the first time, to the best of our knowledge, that lithium can associate with magnesium-bound phosphate sites and then act to modulate purine receptor activity in neuronal cells, suggesting a molecular mode for in vivo lithium action.


Assuntos
Lítio/metabolismo , Lítio/farmacologia , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Lítio/química , Magnésio/metabolismo , Espectroscopia de Ressonância Magnética
12.
Blood ; 122(11): 1935-45, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23908469

RESUMO

Sepsis is a highly fatal disease caused by an initial hyperinflammatory response followed by a state of profound immunosuppression. Although it is well appreciated that the initial production of proinflammatory cytokines by macrophages accompanies the onset of sepsis, it remains unclear what causes the transition to an immunosuppressive state. In this study, we reveal that macrophages themselves are key regulators of this transition and that the surface enzyme CD39 plays a critical role in self-limiting the activation process. We demonstrate that Toll-like receptor (TLR)-stimulated macrophages modulate their activation state by increasing the synthesis and secretion of adenosine triphosphate (ATP). This endogenous ATP is paradoxically immunosuppressive due to its rapid catabolism into adenosine by CD39. Macrophages lacking CD39 are unable to transition to a regulatory state and consequently continue to produce inflammatory cytokines. The importance of this transition is demonstrated in a mouse model of sepsis, where small numbers of CD39-deficient macrophages were sufficient to induce lethal endotoxic shock. Thus, these data implicate CD39 as a key "molecular switch" that allows macrophages to self-limit their activation state. We propose that therapeutics targeting the release and hydrolysis of ATP by macrophages may represent new ways to treat inflammatory diseases.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Homeostase/imunologia , Macrófagos/imunologia , Receptores Toll-Like/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apirase/genética , Apirase/metabolismo , Linhagem Celular , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
13.
Nucleic Acids Res ; 41(4): 2565-80, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275531

RESUMO

Human immunodeficiency virus genome dimerization is initiated through an RNA-RNA kissing interaction formed via the dimerization initiation site (DIS) loop sequence, which has been proposed to be converted to a more thermodynamically stable linkage by the viral p7 form of the nucleocapsid protein (NC). Here, we systematically probed the role of specific amino acids of NCp7 in its chaperone activity in the DIS conversion using 2-aminopurine (2-AP) fluorescence and nuclear magnetic resonance spectroscopy. Through comparative analysis of NCp7 mutants, the presence of positively charged residues in the N-terminus was found to be essential for both helix destabilization and strand transfer functions. It was also observed that the presence and type of the Zn finger is important for NCp7 chaperone activity, but not the order of the Zn fingers. Swapping single aromatic residues between Zn fingers had a significant effect on NCp7 activity; however, these mutants did not exhibit the same activity as mutants in which the order of the Zn fingers was changed, indicating a functional role for other flanking residues. RNA chaperone activity is further correlated with NCp7 structure and interaction with RNA through comparative analysis of nuclear magnetic resonance spectra of NCp7 variants, and complexes of these proteins with the DIS dimer.


Assuntos
HIV-1/genética , RNA Viral/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , 2-Aminopurina/química , Sequência de Aminoácidos , Dimerização , Fluorescência , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , RNA Viral/metabolismo , Dedos de Zinco/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
14.
Hum Vaccin Immunother ; 19(2): 2215152, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37254504

RESUMO

Vaccine sedimentation and resuspension are properties that vaccine makers use to characterize a suspension product during research and development as well as throughout the shelf life of the vaccine. Three vaccines with three different aluminum adjuvants and different antigens were selected and monitored over the course of sedimentation using water proton nuclear magnetic resonance (wNMR) relaxometry. This simple method measured fully intact, single-dose vaccine vials and reported sedimentation profiles for each, which readily distinguished freeze-stressed vaccines from unstressed vaccines.


Assuntos
Alumínio , Vacinas , Adjuvantes Imunológicos
15.
J Diabetes Sci Technol ; 16(6): 1410-1418, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34111968

RESUMO

BACKGROUND: There is a clear need to transition from batch-level to vial/syringe/pen-level quality control of biologic drugs, such as insulin. This could be achieved only by noninvasive and quantitative inspection technologies that maintain the integrity of the drug product. METHODS: Four insulin products for patient self-injection presented as prefilled pens have been noninvasively and quantitatively inspected using the water proton NMR technology. The inspection output is the water proton relaxation rate R2(1H2O), a continuous numerical variable rather than binary pass/fail. RESULTS: Ten pens of each product were inspected. R2(1H2O) displays insignificant variation among the 10 pens of each product, suggesting good insulin content uniformity in the inspected pens. It is also shown that transferring the insulin solution out of and then back into the insulin pen caused significant change in R2(1H2O), presumably due to exposure to O2 in air. CONCLUSIONS: Water proton NMR can noninvasively and quantitatively inspect insulin pens. wNMR can confirm product content uniformity, but not absolute content. Its sensitivity to sample transferring provides a way to detect drug product tampering. This opens the possibility of inspecting every pen/vial/syringe by manufacturers and end-users.


Assuntos
Prótons , Água , Humanos , Insulina , Seringas , Espectroscopia de Ressonância Magnética , Hipoglicemiantes
16.
Methods ; 49(2): 118-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19460437

RESUMO

A highly conserved 35 nucleotide RNA stem-loop, the dimerization initiation site (DIS), in the 5' untranslated region (UTR) of the human immunodeficiency virus type I (HIV-1) genome has been identified as the sequence primarily responsible for initiation of viral genome dimerization. The DIS initiates viral genome dimerization through a loop-loop 'kissing' interaction and is converted from an intermediate 'kissing' to a more thermodynamically stable extended duplex dimer in a conformational rearrangement that is chaperoned by the HIV-1 nucleocapsid protein (NCp7). Here we describe fluorescence methods designed to probe local RNA dynamics and structural transitions associated with the DIS dimer formation and its NCp7 chaperoned structural conversion. These methods take advantage of the exquisite sensitivity of the quantum yield of the fluorescent nucleotide base analog, 2-aminopurine (2-AP), to its immediate structural and dynamic environment. The 2-AP fluorescence methods described allow a detailed kinetic and thermodynamic examination of this type of RNA-RNA interaction, as well as an analysis of the molecular mechanism of NCp7 chaperone activity.


Assuntos
2-Aminopurina/química , HIV-1/metabolismo , RNA Viral/química , Espectrometria de Fluorescência/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Bases , Sítios de Ligação , Biofísica , Dimerização , HIV-1/química , Cinética , Modelos Químicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleocapsídeo/química , Termodinâmica
17.
Curr Protoc Protein Sci ; 99(1): e102, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31869512

RESUMO

The water-proton signal, overwhelmingly considered a nuisance in nuclear magnetic resonance spectroscopy, is advantageously used as a tool to assess protein concentration and to detect protein aggregates in aqueous solutions. The protocols in this article describe use of the water-proton transverse relaxation rate to determine concentration and aggregate content in protein solutions. Detailed recommendations and description of the parameter settings and data processing ensure successful implementation of this technique, even by a user with limited experience in magnetic resonance relaxometry. All measurements are done noninvasively, in a sealed container, without sampling or otherwise aliquoting the solution. The magnetic resonance relaxometry approach offered in this article could be advantageous for analysis of biologics formulations or when use of conventional analytical techniques is not possible. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Nuclear magnetic resonance (NMR) relaxometry to measure protein concentration Basic Protocol 2: NMR relaxometry to measure protein aggregation.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Proteínas/química
18.
Vaccine ; 38(31): 4853-4860, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32482461

RESUMO

Aluminum-adjuvanted vaccines are freeze-sensitive products that require attentive cold chain adherence. Freeze/thaw events can be tested using "The World Health Organization Shake Test", a qualitative test whereby a vial from the batch suspected to have been frozen is checked to infer whether the whole batch has been frozen. In this paper, we present a noninvasive and quantitative method to detect whether a vial of liquid vaccine has experienced freeze/thaw using the water proton transverse relaxation rate by Nuclear Magnetic Resonance relaxometry (wNMR relaxometry). Importantly, wNMR relaxometry does not compromise the vial's integrity so the analyzed vial can be used for vaccination if it meets the quality specifications. Vial-to-vial variability in freezing susceptibility within a single carton of vaccine vials was also detected, both by visual observation and concurrently by wNMR relaxometry. This variability brings into question the practice of using one or a few vials in a batch of vaccines to infer about the quality of the whole batch.


Assuntos
Prótons , Vacinas , Congelamento , Espectroscopia de Ressonância Magnética , Sistemas Automatizados de Assistência Junto ao Leito , Água
19.
RSC Adv ; 9(4): 1956-1966, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516151

RESUMO

Unlike many known amphiphiles, the fluorinated amphiphilic dendrimer studied in this work demonstrated a concentration-dependent conformational transition rather than micellization or assembly. Hydrophobic and hydrophilic interactions with water were suggested as the most probable driving force of this transition. This assumption was consistent with the observed 19F chemical shift changes of the dendrimer compared to a known micelle-forming fluorinated amphiphile. Since water is an important factor in the process, trends of the concentration-dependent changes in water proton transverse relaxation rate served as an indicator of structural changes and/or supramolecular assembly. The conformational transition process was also confirmed by ion-mobility mass-spectrometry. We suggested that structural features, namely, steric hindrances, prevented the micellization/assembly of the dendrimer of this study. This conclusion might inform the approach to develop novel unconventional amphiphiles.

20.
Chem Commun (Camb) ; 54(51): 7003-7006, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29850691

RESUMO

The transverse relaxation rate of water protons R2(1H2O) is found to be sensitive to amide hydrolysis and diglycine dimerization. The results demonstrate the feasibility of using R2(1H2O) as a diagnostic tool to detect chemical changes in aqueous solutions. Potential applications include drug product formulation and inspection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA