Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003399

RESUMO

The aim of this prospective clinical study was to evaluate the potential of the prostate specific membrane antigen (PSMA) targeting ligand, [68Ga]-PSMA-Glu-NH-CO-NH-Lys-2-naphthyl-L-Ala-cyclohexane-DOTA ([68Ga]Ga-PSMA-617) as a positron emission tomography (PET) imaging biomarker in recurrent glioblastoma patients. Patients underwent [68Ga]Ga-PSMA-617 and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET scans on two separate days. [68Ga]Ga-PSMA-617 tumour selectivity was assessed by comparing tumour volume delineation and by assessing the intra-patient correlation between tumour uptake on [68Ga]Ga-PSMA-617 and [18F]FET PET images. [68Ga]Ga-PSMA-617 tumour specificity was evaluated by comparing its tumour-to-brain ratio (TBR) with [18F]FET TBR and its tumour volume with the magnetic resonance imaging (MRI) contrast-enhancing (CE) tumour volume. Ten patients were recruited in this study. [68Ga]Ga-PSMA-617-avid tumour volume was larger than the [18F]FET tumour volume (p = 0.063). There was a positive intra-patient correlation (median Pearson r = 0.51; p < 0.0001) between [68Ga]Ga-PSMA-617 and [18F]FET in the tumour volume. [68Ga]Ga-PSMA-617 had significantly higher TBR (p = 0.002) than [18F]FET. The [68Ga]Ga-PSMA-617-avid tumour volume was larger than the CE tumour volume (p = 0.0039). Overall, accumulation of [68Ga]-Ga-PSMA-617 beyond [18F]FET-avid tumour regions suggests the presence of neoangiogenesis in tumour regions that are not overly metabolically active yet. Higher tumour specificity suggests that [68Ga]-Ga-PSMA-617 could be a better imaging biomarker for recurrent tumour delineation and secondary treatment planning than [18F]FET and CE MRI.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias da Próstata , Masculino , Humanos , Adulto , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Radioisótopos de Gálio , Estudos Prospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Tomografia por Emissão de Pósitrons/métodos , Meios de Contraste , Imageamento por Ressonância Magnética , Doença Crônica , Neoplasias da Próstata/patologia
2.
Front Vet Sci ; 11: 1468831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430382

RESUMO

Introduction: Distinguishing meningiomas from other intracranial neoplasms is clinically relevant as the prognostic and therapeutic implications differ greatly and influence clinical decision making. Dynamic contrast-enhanced MRI (DCE-MRI) is an imaging technique that assists with characterisation of physiologic alterations such as blood flow and tissue vascular permeability. Quantitative pharmacokinetic analysis utilising DCE-MRI has not been studied in canine neuro-oncology. Methods: A retrospective study was performed in canine patients that underwent DCE-MRI with an imaging diagnosis of an intracranial meningioma and surgery for histopathological diagnosis. Kinetic parameters Ktrans and cerebral blood flow were measured and compared to assess whether differences could be identified between meningiomas and other intracranial neoplasms. Results: Six dogs with meningiomas and 3 dogs with other intracranial neoplasms were included for statistical analysis. Cerebral blood flow values were found to be statistically higher within meningiomas compared to other intracranial neoplasms. Ktrans values were higher within meningiomas than in other types of intracranial tumours, however this difference did not reach statistical significance. Discussion: Based on the results of this study cerebral blood flow measurement can be utilised to differentiate canine intracranial meningiomas from other similar appearing intracranial tumours.

3.
Front Oncol ; 13: 1306164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192626

RESUMO

Background: Glioblastoma (GBM) is the most aggressive type of brain cancer, with a 5-year survival rate of ~5% and most tumours recurring locally within months of first-line treatment. Hypoxia is associated with worse clinical outcomes in GBM, as it leads to localized resistance to radiotherapy and subsequent tumour recurrence. Current standard of care treatment does not account for tumour hypoxia, due to the challenges of mapping tumour hypoxia in routine clinical practice. In this clinical study, we aim to investigate the role of oxygen enhanced (OE) and blood-oxygen level dependent (BOLD) MRI as non-invasive imaging biomarkers of hypoxia in GBM, and to evaluate their potential role in dose-painting radiotherapy planning and treatment response assessment. Methods: The primary endpoint is to evaluate the quantitative and spatial correlation between OE and BOLD MRI measurements and [18F]MISO values of uptake in the tumour. The secondary endpoints are to evaluate the repeatability of MRI biomarkers of hypoxia in a test-retest study, to estimate the potential clinical benefits of using MRI biomarkers of hypoxia to guide dose-painting radiotherapy, and to evaluate the ability of MRI biomarkers of hypoxia to assess treatment response. Twenty newly diagnosed GBM patients will be enrolled in this study. Patients will undergo standard of care treatment while receiving additional OE/BOLD MRI and [18F]MISO PET scans at several timepoints during treatment. The ability of OE/BOLD MRI to map hypoxic tumour regions will be evaluated by assessing spatial and quantitative correlations with areas of hypoxic tumour identified via [18F]MISO PET imaging. Discussion: MANGO (Magnetic resonance imaging of hypoxia for radiation treatment guidance in glioblastoma multiforme) is a diagnostic/prognostic study investigating the role of imaging biomarkers of hypoxia in GBM management. The study will generate a large amount of longitudinal multimodal MRI and PET imaging data that could be used to unveil dynamic changes in tumour physiology that currently limit treatment efficacy, thereby providing a means to develop more effective and personalised treatments.

4.
Cancers (Basel) ; 14(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010891

RESUMO

Radiomics is a field of medical imaging analysis that focuses on the extraction of many quantitative imaging features related to shape, intensity and texture. These features are incorporated into models designed to predict important clinical or biological endpoints for patients. Attention for radiomics research has recently grown dramatically due to the increased use of imaging and the availability of large, publicly available imaging datasets. Glioblastoma multiforme (GBM) patients stand to benefit from this emerging research field as radiomics has the potential to assess the biological heterogeneity of the tumour, which contributes significantly to the inefficacy of current standard of care therapy. Radiomics models still require further development before they are implemented clinically in GBM patient management. Challenges relating to the standardisation of the radiomics process and the validation of radiomic models impede the progress of research towards clinical implementation. In this manuscript, we review the current state of radiomics in GBM, and we highlight the barriers to clinical implementation and discuss future validation studies needed to advance radiomics models towards clinical application.

5.
J Control Release ; 345: 443-463, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337938

RESUMO

Survival outcomes for patients with glioblastoma multiforme (GBM) have remained poor for the past 15 years, reflecting a clear challenge in the development of more effective treatment strategies. The efficacy of systemic therapies for GBM is greatly limited by the presence of the blood-brain barrier (BBB), which prevents drug penetration and accumulation in regions of infiltrative tumour, as represented in a consistent portion of GBM lesions. Focused ultrasound (FUS) - a technique that uses low-frequency ultrasound waves to induce targeted temporary disruption of the BBB - promises to improve survival outcomes by enhancing drug delivery and accumulation to infiltrating tumour regions. In this review we discuss the current state of preclinical investigations using FUS to enhance delivery of systemic therapies to intracranial neoplasms. We highlight critical methodological inconsistencies that are hampering clinical translation of FUS and we provide guiding principles for future preclinical studies. Particularly, we focus our attention on the importance of the selection of clinically relevant animal models and to the standardization of methods for FUS delivery, which will be paramount to the successful clinical translation of this promising technology for treatment in GBM patients. We also discuss how preclinical FUS research can benefit the development of GBM immunotherapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Humanos , Microbolhas
6.
EJNMMI Phys ; 9(1): 9, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122529

RESUMO

BACKGROUND: Multicentre clinical trials evaluating the role of 18F-Fluoroethyl-L-tyrosine (18F-FET) PET as a diagnostic biomarker in glioma management have highlighted a need for standardised methods of data analysis. 18F-FET uptake normalised against background in the contralateral brain is a standard imaging technique to delineate the biological tumour volume (BTV). Quantitative analysis of 18F-FET PET images requires a consistent and robust background activity. Currently, defining background activity involves the manual selection of an arbitrary region of interest, a process that is subject to large variability. This study aims to eliminate methodological errors in background activity definition through the introduction of a semiautomated method for region of interest selection. A new method for background activity definition, involving the semiautomated generation of mirror-image (MI) reference regions, was compared with the current state-of-the-art method, involving manually drawing crescent-shape (gCS) reference regions. The MI and gCS methods were tested by measuring values of background activity and resulting BTV of 18F-FET PET scans of ten patients with recurrent glioblastoma multiforme generated from inputs provided by seven readers. To assess intra-reader variability, each scan was evaluated six times by each reader. Intra- and inter-reader variability in background activity and BTV definition was assessed by means of coefficient of variation. RESULTS: Compared to the gCS method, the MI method showed significantly lower intra- and inter-reader variability both in background activity and in BTV definition. CONCLUSIONS: The proposed semiautomated MI method minimises intra- and inter-reader variability, providing a valuable approach for standardisation of 18F-FET PET quantitative parameters. Trial registration ANZCTR, ACTRN12618001346268. Registered 9 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374253.

7.
Radiother Oncol ; 170: 37-47, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257848

RESUMO

Proton therapy and MRI-Linacs are two of the most exciting and fast growing technologies in radiation oncology. With over 100 MRI-Linacs and 100 proton therapy centres either in operation or under construction, an integrated approach that brings together the excellent soft tissue imaging of MRI with the superior dose conformity of proton therapy is compelling. The promise of MRI-guided proton therapy has prompted multiple research studies and the building of two pre-clinical experimental systems, taking us closer to realisation of this technology. Patients who would benefit most are those whose cancers have substantial tumour motion or anatomical variation, and those who are currently unable to receive safe dose-escalation due to nearby critical structures. MRI-guided proton therapy could allow more patients with pancreatic cancer, central lung cancer and oligo-metastatic cancers in the upper abdomen (e.g. liver and adrenal) to safely receive escalated curative doses. Head and neck, lung, brain and cervix cancers, where treatment accuracy is affected by inter-fraction tumour changes such as tumour regression or changing oedema, or normal anatomy variations, would also benefit from MRI-guidance. There will be new options to improve cure by functional MRI-guided biologically adapted proton therapy. This review focuses on the clinical aspects of MRI-guided proton therapy. We describe the clinical challenges in proton therapy and the clinical benefits from the addition of MRI-guidance. We provide updates on the design and beam modelling of in-line and perpendicular MRI-guided proton therapy systems, and a roadmap to clinical implementation.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia Guiada por Imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
8.
Neurooncol Adv ; 4(1): vdac134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105390

RESUMO

Background: New technologies developed to improve survival outcomes for glioblastoma (GBM) continue to have limited success. Recently, image-guided dose painting (DP) radiotherapy has emerged as a promising strategy to increase local control rates. In this study, we evaluate the practical application of a multiparametric MRI model of glioma infiltration for DP radiotherapy in GBM by measuring its conformity, feasibility, and expected clinical benefits against standard of care treatment. Methods: Maps of tumor probability were generated from perfusion/diffusion MRI data from 17 GBM patients via a previously developed model of GBM infiltration. Prescriptions for DP were linearly derived from tumor probability maps and used to develop dose optimized treatment plans. Conformity of DP plans to dose prescriptions was measured via a quality factor. Feasibility of DP plans was evaluated by dose metrics to target volumes and critical brain structures. Expected clinical benefit of DP plans was assessed by tumor control probability. The DP plans were compared to standard radiotherapy plans. Results: The conformity of the DP plans was >90%. Compared to the standard plans, DP (1) did not affect dose delivered to organs at risk; (2) increased mean and maximum dose and improved minimum dose coverage for the target volumes; (3) reduced minimum dose within the radiotherapy treatment margins; (4) improved local tumor control probability within the target volumes for all patients. Conclusions: A multiparametric MRI model of GBM infiltration can enable conformal, feasible, and potentially beneficial dose painting radiotherapy plans.

9.
Phys Imaging Radiat Oncol ; 23: 8-15, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35734265

RESUMO

Background and purpose: Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging (mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting prescriptions derived from mpMRI. Materials and methods: TP maps were calculated with a clinically validated model that linearly combined apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for parametric, TP and DP maps within radiotherapy margins. Results: DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the combination of ADC and rBF were the most stable (median ICC: 0.89). Conclusions: Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of repeatability and can be used to generate reliable dose-painting plans for GBM patients.

10.
Nat Rev Clin Oncol ; 19(7): 458-470, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35440773

RESUMO

MRI can help to categorize tissues as malignant or non-malignant both anatomically and functionally, with a high level of spatial and temporal resolution. This non-invasive imaging modality has been integrated with radiotherapy in devices that can differentially target the most aggressive and resistant regions of tumours. The past decade has seen the clinical deployment of treatment devices that combine imaging with targeted irradiation, making the aspiration of integrated MRI-guided radiotherapy (MRIgRT) a reality. The two main clinical drivers for the adoption of MRIgRT are the ability to image anatomical changes that occur before and during treatment in order to adapt the treatment approach, and to image and target the biological features of each tumour. Using motion management and biological targeting, the radiation dose delivered to the tumour can be adjusted during treatment to improve the probability of tumour control, while simultaneously reducing the radiation delivered to non-malignant tissues, thereby reducing the risk of treatment-related toxicities. The benefits of this approach are expected to increase survival and quality of life. In this Review, we describe the current state of MRIgRT, and the opportunities and challenges of this new radiotherapy approach.


Assuntos
Neoplasias , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Qualidade de Vida , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
11.
Neuro Oncol ; 23(5): 732-742, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33258962

RESUMO

BACKGROUND: Novel targeted therapies for children diagnosed with medulloblastoma (MB), the most common malignant pediatric brain tumor, are urgently required. A major hurdle in the development of effective therapies is the impaired delivery of systemic therapies to tumor cells due to a specialized endothelial blood-brain barrier (BBB). Accordingly, the integrity of the BBB is an essential consideration in any preclinical model used for assessing novel therapeutics. This study sought to assess the functional integrity of the BBB in several preclinical mouse models of MB. METHODS: Dynamic contrast enhancement magnetic resonance imaging (MRI) was used to evaluate blood-brain-tumor barrier (BBTB) permeability in a murine genetically engineered mouse model (GEMM) of Sonic Hedgehog (SHH) MB, patient-derived orthotopic xenograft models of MB (SHH and Gp3), and orthotopic transplantation of GEMM tumor cells, enabling a comparison of the direct effects of transplantation on the integrity of the BBTB. Immunofluorescence analysis was performed to compare the structural and subcellular features of tumor-associated vasculature in all models. RESULTS: Contrast enhancement was observed in all transplantation models of MB. No contrast enhancement was observed in the GEMM despite significant tumor burden. Cellular analysis of BBTB integrity revealed aberrancies in all transplantation models, correlating to the varying levels of BBTB permeability observed by MRI in these models. CONCLUSIONS: These results highlight functional differences in the integrity of the BBTB and tumor vessel phenotype between commonly utilized preclinical models of MB, with important implications for the preclinical evaluation of novel therapeutic agents for MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Barreira Hematoencefálica , Linhagem Celular Tumoral , Criança , Proteínas Hedgehog , Xenoenxertos , Humanos , Camundongos
12.
Genome Med ; 13(1): 103, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154646

RESUMO

BACKGROUND: Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects. METHODS: We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB. RESULTS: Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB. CONCLUSIONS: Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Neoplasias Cerebelares/etiologia , Desenvolvimento de Medicamentos , Meduloblastoma/etiologia , Farmacogenética/métodos , Animais , Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Camundongos , Camundongos Transgênicos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Biologia de Sistemas/métodos , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neurooncol Adv ; 2(1): vdaa030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642689

RESUMO

BACKGROUND: High-grade glioma (HGG) remains a recalcitrant clinical problem despite many decades of research. A major challenge in improving prognosis is the inability of current therapeutic strategies to address a clinically significant burden of infiltrating tumor cells that extend beyond the margins of the primary tumor mass. Such cells cannot be surgically excised nor efficiently targeted by radiation therapy. Therapeutic targeting of this tumor cell population is significantly hampered by the presence of an intact blood-brain barrier (BBB). In this study, we performed a preclinical investigation of the efficiency of MR-guided Focused Ultrasound (FUS) to temporarily disrupt the BBB to allow selective delivery of a tumor-targeting antibody to infiltrating tumor. METHODS: Structural MRI, dynamic-contrast enhancement MRI, and histology were used to fully characterize the MR-enhancing properties of a patient-derived xenograft (PDX) orthotopic mouse model of HGG and to develop a reproducible, robust model of nonenhancing HGG. PET-CT imaging techniques were then used to evaluate the efficacy of FUS to increase 89Zr-radiolabeled antibody concentration in nonenhancing HGG regions and adjacent non-targeted tumor tissue. RESULTS: The PDX mouse model of HGG has a significant tumor burden lying behind an intact BBB. Increased antibody uptake in nonenhancing tumor regions is directly proportional to the FUS-targeted volume. FUS locally increased antibody uptake in FUS-targeted regions of the tumor with an intact BBB, while leaving untargeted regions unaffected. CONCLUSIONS: FUS exposure successfully allowed temporary BBB disruption, localized to specifically targeted, nonenhancing, infiltrating tumor regions and delivery of a systemically administered antibody was significantly increased.

14.
Theranostics ; 10(14): 6361-6371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483457

RESUMO

The clinical translation of new nanoparticle-based therapies for high-grade glioma (HGG) remains extremely poor. This has partly been due to the lack of suitable preclinical mouse models capable of replicating the complex characteristics of recurrent HGG (rHGG), namely the heterogeneous structural and functional characteristics of the blood-brain barrier (BBB). The goal of this study is to compare the characteristics of the tumor BBB of rHGG with two different mouse models of HGG, the ubiquitously used U87 cell line xenograft model and a patient-derived cell line WK1 xenograft model, in order to assess their suitability for nanomedicine research. Method: Structural MRI was used to assess the extent of BBB opening in mouse models with a fully developed tumor, and dynamic contrast enhanced MRI was used to obtain values of BBB permeability in contrast enhancing tumor. H&E and immunofluorescence staining were used to validate results obtained from the in vivo imaging studies. Results: The extent of BBB disruption and permeability in the contrast enhancing tumor was significantly higher in the U87 model than in rHGG. These values in the WK1 model are similar to those of rHGG. The U87 model is not infiltrative, has an entirely abnormal and leaky vasculature and it is not of glial origin. The WK1 model infiltrates into the non-neoplastic brain parenchyma, it has both regions with intact BBB and regions with leaky BBB and remains of glial origin. Conclusion: The WK1 mouse model more accurately reproduces the extent of BBB disruption, the level of BBB permeability and the histopathological characteristics found in rHGG patients than the U87 mouse model, and is therefore a more clinically relevant model for preclinical evaluations of emerging nanoparticle-based therapies for HGG.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Glioma/patologia , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Animais , Barreira Hematoencefálica/química , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Permeabilidade Capilar , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Adv Drug Deliv Rev ; 136-137: 49-61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308226

RESUMO

Despite significant improvements in the clinical management of glioblastoma, poor delivery of systemic therapies to the entire population of tumour cells remains one of the biggest challenges in the achievement of more effective treatments. On the one hand, the abnormal and dysfunctional tumour vascular network largely limits blood perfusion, resulting in an inhomogeneous delivery of drugs to the tumour. On the other hand, the presence of an intact blood-brain barrier (BBB) in certain regions of the tumour prevents chemotherapeutic drugs from permeating through the tumour vessels and reaching the diseased cells. In this review we analyse in detail the implications of the presence of a dysfunctional vascular network and the impenetrable BBB on drug transport. We discuss advantages and limitations of the currently available strategies for remodelling the tumour vasculature aiming to ameliorate the above mentioned limitations. Finally we review research methods for visualising vascular dysfunction and highlight the power of DCE- and DSC-MRI imaging to assess changes in blood perfusion and BBB permeability.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Glioblastoma/irrigação sanguínea , Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Antineoplásicos/farmacologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/efeitos dos fármacos , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neovascularização Patológica/diagnóstico por imagem
17.
Nat Commun ; 7: 13801, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924868

RESUMO

The reactive oxygen species superoxide (O2·-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ∼120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.


Assuntos
Antozoários/metabolismo , Dinoflagellida/metabolismo , Pigmentação , Superóxidos/metabolismo , Simbiose , Animais , Antozoários/microbiologia , Ritmo Circadiano , Larva/fisiologia , Microbiota , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA