Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cytometry B Clin Cytom ; 100(6): 622-631, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33915021

RESUMO

BACKGROUND: Chimeric antigen receptor-modified T-cells targeting CD19 (CAR-T19) are licensed for treating relapsed/refractory diffuse large B-cell lymphoma and B-acute lymphoblastic leukemia. Predicting treatment responses and toxicity (e.g., cytokine release syndrome and neurotoxicity) remains a big challenge. CAR-T19 monitoring could increase our understanding of treatment responses and be of relevance to patient management. A robust method for accurate CAR-T19 detection is therefore extremely desirable. METHODS: An assay that uses fluorochrome-conjugated human recombinant soluble CD19 was tested against two commercially available CAR-T19 therapies and a CAR-T19 cell line developed in-house. Precision, concordance, and analyte stability were tested using peripheral blood obtained from CAR-T19-treated patients and controls. RESULTS: The assay showed good accuracy, and had a limit of blank for whole blood samples of 0.13%. Reproducibility and inter-operator concordance were satisfactory (CVs <15%). The assay distinguished CAR-T19 from reactive T-cells in cerebrospinal fluid (CSF) from patients with suspected immune effector cell-associated neurotoxicity syndrome (ICANS), and was adapted to study memory T-cell compartments in treated patients. CONCLUSION: The assay enabled routine monitoring of CAR-T19 in blood and CSF samples. Despite profound cytopenia in many lymphoma patients, results were obtained regularly from only 4 ml of blood. The assay can be adapted easily to characterize the memory and exhaustion status of CAR-T19 and native T-cells. Importantly, it does not rely on CAR construct specificity; thus, it can be used to detect any CD19-targeted CAR cell. Finally, our validation process can serve as a blueprint for other fluorochrome proteins used to detect CAR cells.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Antígenos CD19 , Citometria de Fluxo , Humanos , Imunoterapia Adotiva/métodos , Laboratórios , Linfoma Difuso de Grandes Células B/diagnóstico , Receptores de Antígenos de Linfócitos T , Reprodutibilidade dos Testes
2.
bioRxiv ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33972942

RESUMO

Recently, two mRNA vaccines to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become available, but there is also an emergence of SARS-CoV-2 variants with increased transmissibility and virulence1-6. A major concern is whether the available vaccines will be equally effective against these variants. The vaccines are designed to induce an immune response against the SARS-CoV-2 spike protein7,8, which is required for viral entry to host cells9. Immunity to SARS-CoV-2 is often evaluated by antibody production, while less is known about the T-cell response. Here we developed, characterized, and implemented two standardized, functional assays to measure T-cell immunity to SARS-CoV-2 in uninfected, convalescent, and vaccinated individuals. We found that vaccinated individuals had robust T-cell responses to the wild type spike and nucleocapsid proteins, even more so than convalescent patients. We also found detectable but diminished T-cell responses to spike variants (B.1.1.7, B.1.351, and B.1.1.248) among vaccinated but otherwise healthy donors. Since decreases in antibody neutralization have also been observed with some variants10-12, investigation into the T-cell response to these variants as an alternative means of viral control is imperative. Standardized measurements of T-cell responses to SARS-CoV-2 are feasible and can be easily adjusted to determine changes in response to variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA