Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751748

RESUMO

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Assuntos
Células Caliciformes/citologia , Intestino Delgado/citologia , NF-kappa B/metabolismo , Celulas de Paneth/citologia , Animais , Diferenciação Celular , Autorrenovação Celular , Células Caliciformes/metabolismo , Homeostase , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , NF-kappa B/genética , Organoides/citologia , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Celulas de Paneth/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
2.
Arch Toxicol ; 91(4): 1847-1858, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27578021

RESUMO

Unconjugated bilirubin (UCB) in newborns may lead to bilirubin neurotoxicity. Few studies investigated the activation of endoplasmic reticulum stress (ER stress) by UCB. We performed an in vitro comparative study using undifferentiated SH-SY5Y, differentiated GI-ME-N neuronal cells and human U87 astrocytoma cells. ER stress and its contribution to inflammation and apoptosis induced by UCB were analyzed. Cytotoxicity, ER stress and inflammation were observed only in neuronal cells, despite intracellular UCB accumulation in all three cell types. UCB toxicity was enhanced in undifferentiated SH-SY5Y cells and correlated with a higher mRNA expression of pro-apoptotic CHOP. Mouse embryonic fibroblast knockout for CHOP and CHOP siRNA-silenced SH-SY5Y increased cells viability upon UCB exposure. In SH-SY5Y, ER stress inhibition by 4-phenylbutyric acid reduced UCB-induced apoptosis and decreased the cleaved forms of caspase-3 and PARP proteins. Reporter gene assay and PERK siRNA showed that IL-8 induction by UCB is transcriptionally regulated by NFкB and PERK signaling. These data suggest that ER stress has an important role in the UCB-induced inflammation and apoptosis, and that targeting ER stress may represent a potential therapeutic approach to decrease UCB-induced neurotoxicity.


Assuntos
Bilirrubina/metabolismo , Estresse do Retículo Endoplasmático , Inflamação/patologia , Fator de Transcrição CHOP/genética , Animais , Apoptose , Astrocitoma/metabolismo , Caspase 3/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Inativação Gênica , Humanos , Interleucina-8/metabolismo , Camundongos , Camundongos Knockout , Neuroblastoma/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fenilbutiratos/farmacologia
3.
Cell Chem Biol ; 30(10): 1303-1312.e3, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37506701

RESUMO

Transcription factor NF-κB potently activates anti-apoptotic genes, and its inactivation significantly reduces tumor cell survival following genotoxic stresses. We identified two structurally distinct lead compounds that selectively inhibit NF-κB activation by DNA double-strand breaks, but not by other stimuli, such as TNFα. Our compounds do not directly inhibit previously identified regulators of this pathway, most critically including IκB kinase (IKK), but inhibit signal transmission in-between ATM, PARP1, and IKKγ. Deconvolution strategies, including derivatization and in vitro testing in multi-kinase panels, yielded shared targets, cdc-like kinase (CLK) 2 and 4, as essential regulators of DNA damage-induced IKK and NF-κB activity. Both leads sensitize to DNA damaging agents by increasing p53-induced apoptosis, thereby reducing cancer cell viability. We propose that our lead compounds and derivatives can be used in context of genotoxic therapy-induced or ongoing DNA damage to increase tumor cell apoptosis, which may be beneficial in cancer treatment.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA