Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Microb Ecol ; 86(4): 2357-2372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37222807

RESUMO

Denitrification in sediments is a key microbial process that removes excess fixed nitrogen, while dissimilatory nitrate reduction to ammonium (DNRA) converts nitrate to ammonium. Although microorganisms are responsible for essential nitrogen (N) cycling, it is not yet fully understood how these microbially mediated processes respond to toxic hydrophobic organic compounds (HOCs) and metals. In this study, we sampled long-term polluted sediment from the outer harbor of Oskarshamn (Baltic Sea), measured denitrification and DNRA rates, and analyzed taxonomic structure and N-cycling genes of microbial communities using metagenomics. Results showed that denitrification and DNRA rates were within the range of a national reference site and other unpolluted sites in the Baltic Sea, indicating that long-term pollution did not significantly affect these processes. Furthermore, our results indicate an adaptation to metal pollution by the N-cycling microbial community. These findings suggest that denitrification and DNRA rates are affected more by eutrophication and organic enrichment than by historic pollution of metals and organic contaminants.


Assuntos
Compostos de Amônio , Microbiota , Nitratos , Desnitrificação , Nitrogênio , Oxirredução
2.
Glob Chang Biol ; 28(14): 4308-4322, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340089

RESUMO

Coastal methane (CH4 ) emissions dominate the global ocean CH4 budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH4 concentrations, δ13 C-CH4  values, and CH4  sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH4 distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH4 concentrations ranging two orders of magnitude (i.e., 6-460 nM CH4 ) with habitat-specific seasonal and diurnal patterns. We observed (1) δ13 C-CH4  signatures that revealed habitat-specific CH4 production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH4 distribution signified by apparent activation energies of ~1 eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH4 distribution from few samples involves large errors, and that ~50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH4  sources (i.e., releasing ≥ 100 µmol CH4  m-2  day-1 in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH4 estimates and confine the habitat-specific contribution to regional and global CH4 budgets.


Assuntos
Ecossistema , Metano , Carbono , Dióxido de Carbono , Reprodutibilidade dos Testes , Áreas Alagadas
3.
Mol Ecol ; 30(13): 3023-3039, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706485

RESUMO

Benthic macrofauna is regularly used in monitoring programmes, however the vast majority of benthic eukaryotic biodiversity lies mostly in microscopic organisms, such as meiofauna (invertebrates < 1 mm) and protists, that rapidly responds to environmental change. These communities have traditionally been hard to sample and handle in the laboratory, but DNA sequencing has made such work less time consuming. While DNA sequencing captures both alive and dead organisms, environmental RNA (eRNA) better targets living organisms or organisms of recent origin in the environment. Here, we assessed the biodiversity of three known bioindicator microeukaryote groups (nematodes, foraminifera, and ciliates) in sediment samples collected at seven coastal sites along an organic carbon (OC) gradient. We aimed to investigate if eRNA shotgun sequencing can be used to simultaneously detect differences in (i) biodiversity of multiple microeukaryotic communities; and (ii) functional feeding traits of nematodes. Results showed that biodiversity was lower for nematodes and foraminifera in high OC (6.2%-6.9%), when compared to low OC sediments (1.2%-2.8%). Dissimilarity in community composition increased for all three groups between Low OC and High OC, as well as the classified feeding type of nematode genera (with more nonselective deposit feeders in high OC sediment). High relative abundant genera included nematode Sabatieria and foraminifera Elphidium in high OC, and Cryptocaryon-like ciliates in low OC sediments. Considering that future sequencing technologies are likely to decrease in cost, the use of eRNA shotgun sequencing to assess biodiversity of benthic microeukaryotes could be a powerful tool in recurring monitoring programmes.


Assuntos
Foraminíferos , Nematoides , Animais , Biodiversidade , Monitoramento Ambiental , Foraminíferos/genética , Sedimentos Geológicos , Sequenciamento de Nucleotídeos em Larga Escala , Nematoides/genética
4.
Microb Ecol ; 81(1): 36-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32803362

RESUMO

Seasonally nitrogen-limited and phosphorus-replete temperate coastal waters generally host dense and diverse diazotrophic communities. Despite numerous studies in marine systems, little is known about diazotrophs and their functioning in oligohaline estuarine environments. Here we applied a combination of nifH transcript and metagenomic shotgun sequencing approaches to investigate temporal shifts in taxonomic composition and nifH activity of size-fractionated diazotrophic communities in a shallow and mostly freshwater coastal lagoon. Patterns in active nifH phylotypes exhibited a clear seasonal succession, which reflected their different tolerances to temperature change and nitrogen (N) availability. Thus, in spring, heterotrophic diazotrophs (Proteobacteria) dominated the nifH phylotypes, while increasing water temperature and depletion of inorganic N fostered heterocystous Cyanobacteria in summer. Metagenomic data demonstrated four main N-cycling pathways and three of them with a clear seasonal pattern: denitrification (spring) → N2 fixation (summer) → assimilative NO3- reduction (fall), with NH4+ uptake into cells occurring across all seasons. Although a substantial denitrification signal was observed in spring, it could have originated from the re-suspended benthic rather than planktonic community. Our results contribute to a better understanding of the realized genetic potential of pelagic N2 fixation and its seasonal dynamics in oligohaline estuarine ecosystems, which are natural coastal biogeochemical reactors.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Água Doce/microbiologia , Ciclo do Nitrogênio/fisiologia , Fixação de Nitrogênio/fisiologia , DNA Ambiental/genética , Estuários , Processos Heterotróficos , Microbiota , Oxirredutases/genética , Filogenia , RNA/genética , Estações do Ano , Microbiologia da Água
5.
Mol Ecol ; 28(16): 3813-3829, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332853

RESUMO

Coastal benthic biodiversity is under increased pressure from climate change, eutrophication, hypoxia, and changes in salinity due to increase in river runoff. The Baltic Sea is a large brackish system characterized by steep environmental gradients that experiences all of the mentioned stressors. As such it provides an ideal model system for studying the impact of on-going and future climate change on biodiversity and function of benthic ecosystems. Meiofauna (animals < 1 mm) are abundant in sediment and are still largely unexplored even though they are known to regulate organic matter degradation and nutrient cycling. In this study, benthic meiofaunal community structure was analysed along a salinity gradient in the Baltic Sea proper using high-throughput sequencing. Our results demonstrate that areas with higher salinity have a higher biodiversity, and salinity is probably the main driver influencing meiofauna diversity and community composition. Furthermore, in the more diverse and saline environments a larger amount of nematode genera classified as predators prevailed, and meiofauna-macrofauna associations were more prominent. These findings show that in the Baltic Sea, a decrease in salinity resulting from accelerated climate change will probably lead to decreased benthic biodiversity, and cause profound changes in benthic communities, with potential consequences for ecosystem stability, functions and services.


Assuntos
Biodiversidade , Nematoides/classificação , Salinidade , Animais , Biologia Computacional , Finlândia , Oceanos e Mares , Dinâmica Populacional , Rios , Análise de Sequência de DNA , Suécia
6.
Microb Ecol ; 77(2): 288-303, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30019110

RESUMO

Two annual Baltic Sea phytoplankton blooms occur in spring and summer. The bloom intensity is determined by nutrient concentrations in the water, while the period depends on weather conditions. During the course of the bloom, dead cells sink to the sediment where their degradation consumes oxygen to create hypoxic zones (< 2 mg/L dissolved oxygen). These zones prevent the establishment of benthic communities and may result in fish mortality. The aim of the study was to determine how the spring and autumn sediment chemistry and microbial community composition changed due to degradation of diatom or cyanobacterial biomass, respectively. Results from incubation of sediment cores showed some typical anaerobic microbial processes after biomass addition such as a decrease in NO2- + NO3- in the sediment surface (0-1 cm) and iron in the underlying layer (1-2 cm). In addition, an increase in NO2- + NO3- was observed in the overlying benthic water in all amended and control incubations. The combination of NO2- + NO3- diffusion plus nitrification could not account for this increase. Based on 16S rRNA gene sequences, the addition of cyanobacterial biomass during autumn caused a large increase in ferrous iron-oxidizing archaea while diatom biomass amendment during spring caused minor changes in the microbial community. Considering that OTUs sharing lineages with acidophilic microorganisms had a high relative abundance during autumn, it was suggested that specific niches developed in sediment microenvironments. These findings highlight the importance of nitrogen cycling and early microbial community changes in the sediment due to sinking phytoplankton before potential hypoxia occurs.


Assuntos
Bactérias/isolamento & purificação , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Fitoplâncton/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Biomassa , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Eutrofização , Sedimentos Geológicos/química , Nitratos/análise , Nitratos/metabolismo , Nitritos/análise , Nitritos/metabolismo , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Estações do Ano , Água do Mar/química , Água do Mar/microbiologia
7.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28978732

RESUMO

An important characteristic of marine sediments is the oxygen concentration that affects many central metabolic processes. There has been a widespread increase in hypoxia in coastal systems (referred to as 'dead zones') mainly caused by eutrophication. Hence, it is central to understand the metabolism and ecology of eukaryotic life in sediments during changing oxygen conditions. Therefore, we sampled coastal 'dead zone' Baltic Sea sediment during autumn and spring, and analysed the eukaryotic metatranscriptome from field samples and after incubation in the dark under oxic or anoxic conditions. Bacillariophyta (diatoms) dominated the eukaryotic metatranscriptome in spring and were also abundant during autumn. A large fraction of the diatom RNA reads was associated with the photosystems suggesting a constitutive expression in darkness. Microscope observation showed intact diatom cells and these would, if hatched, represent a significant part of the pelagic phytoplankton biomass. Oxygenation did not significantly change the relative proportion of diatoms nor resulted in any major shifts in metabolic 'signatures'. By contrast, diatoms rapidly responded when exposed to light suggesting that light is limiting diatom development in hypoxic sediments. Hence, it is suggested that diatoms in hypoxic sediments are on 'standby' to exploit the environment if they reach suitable habitats.


Assuntos
Diatomáceas/genética , Eutrofização , Sedimentos Geológicos/análise , Metagenoma , Água do Mar/análise , Biomassa , Diatomáceas/fisiologia , Europa (Continente) , Fitoplâncton/genética , Fitoplâncton/fisiologia , RNA/análise , Estações do Ano
8.
Biodegradation ; 28(4): 287-301, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577026

RESUMO

Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.


Assuntos
Processos Autotróficos , Temperatura Baixa , Desnitrificação , Elétrons , Tiocianatos/farmacologia , Tiossulfatos/farmacologia , Aerobiose , Anaerobiose , Processos Autotróficos/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Reatores Biológicos/microbiologia , Desnitrificação/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Filogenia
9.
Environ Sci Technol ; 50(23): 12808-12815, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934286

RESUMO

After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.


Assuntos
RNA Ribossômico 16S , Sulfetos , Reatores Biológicos/microbiologia , Sulfeto de Hidrogênio/química , Compostos de Sulfidrila/química
10.
Proc Biol Sci ; 282(1817): 20152025, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26468249

RESUMO

Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 10(5) nauplii m(-2) emerged from sediment turned oxic compared with 0.02 × 10(5) m(-2) from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.


Assuntos
Copépodes/crescimento & desenvolvimento , Sedimentos Geológicos/química , Oxigênio/metabolismo , Rotíferos/crescimento & desenvolvimento , Águas Salinas/química , Anaerobiose , Animais , Oceanos e Mares , Óvulo/crescimento & desenvolvimento , Zooplâncton/crescimento & desenvolvimento
11.
Front Microbiol ; 15: 1393538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912348

RESUMO

The world's oceans are challenged by climate change linked warming with typically highly populated coastal areas being particularly susceptible to these effects. Many studies of climate change on the marine environment use large, short-term temperature manipulations that neglect factors such as long-term adaptation and seasonal cycles. In this study, a Baltic Sea 'heated' bay influenced by thermal discharge since the 1970s from a nuclear reactor (in relation to an unaffected nearby 'control' bay) was used to investigate how elevated temperature impacts surface water microbial communities and activities. 16S rRNA gene amplicon based microbial diversity and population structure showed no difference in alpha diversity in surface water microbial communities, while the beta diversity showed a dissimilarity between the bays. Amplicon sequencing variant relative abundances between the bays showed statistically higher values for, e.g., Ilumatobacteraceae and Burkholderiaceae in the heated and control bays, respectively. RNA transcript-derived activities followed a similar pattern in alpha and beta diversity with no effect on Shannon's H diversity but a significant difference in the beta diversity between the bays. The RNA data further showed more elevated transcript counts assigned to stress related genes in the heated bay that included heat shock protein genes dnaKJ, the co-chaperonin groS, and the nucleotide exchange factor heat shock protein grpE. The RNA data also showed elevated oxidative phosphorylation transcripts in the heated (e.g., atpHG) compared to control (e.g., atpAEFB) bay. Furthermore, genes related to photosynthesis had generally higher transcript numbers in the control bay, such as photosystem I (psaAC) and II genes (psbABCEH). These increased stress gene responses in the heated bay will likely have additional cascading effects on marine carbon cycling and ecosystem services.

12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366020

RESUMO

Coastal ecosystems dominate oceanic methane (CH4) emissions. However, there is limited knowledge about how biotic interactions between infauna and aerobic methanotrophs (i.e. CH4 oxidizing bacteria) drive the spatial-temporal dynamics of these emissions. Here, we investigated the role of meio- and macrofauna in mediating CH4 sediment-water fluxes and aerobic methanotrophic activity that can oxidize significant portions of CH4. We show that macrofauna increases CH4 fluxes by enhancing vertical solute transport through bioturbation, but this effect is somewhat offset by high meiofauna abundance. The increase in CH4 flux reduces CH4 pore-water availability, resulting in lower abundance and activity of aerobic methanotrophs, an effect that counterbalances the potential stimulation of these bacteria by higher oxygen flux to the sediment via bioturbation. These findings indicate that a larger than previously thought portion of CH4 emissions from coastal ecosystems is due to faunal activity and multiple complex interactions with methanotrophs.


Assuntos
Ecossistema , Metano , Bactérias/genética , Água
13.
Sci Total Environ ; 945: 174183, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909808

RESUMO

Coastal areas are an important source of methane (CH4). However, the exact origins of CH4 in the surface waters of coastal regions, which in turn drive sea-air emissions, remain uncertain. To gain a comprehensive understanding of the current and future climate change feedbacks, it is crucial to identify these CH4 sources and processes that regulate its formation and oxidation. This study investigated coastal CH4 dynamics by comparing water column data from six stations located in the brackish Tvärminne Archipelago, Baltic Sea. The sediment biogeochemistry and microbiology were further investigated at two stations (i.e., nearshore and offshore). These stations differed in terms of stratification, bottom water redox conditions, and organic matter loading. At the nearshore station, CH4 diffusion from the sediment into the water column was negligible, because nearly all CH4 was oxidized within the upper sediment column before reaching the sediment surface. On the other hand, at the offshore station, there was significant benthic diffusion of CH4, albeit the majority underwent oxidation before reaching the sediment-water interface, due to shoaling of the sulfate methane transition zone (SMTZ). The potential contribution of CH4 production in the water column was evaluated and was found to be negligible. After examining the isotopic signatures of δ13C-CH4 across the sediment and water column, it became apparent that the surface water δ13C-CH4 values observed in areas with thermal stratification could not be explained by diffusion, advective fluxes, nor production in the water column. In fact, these values bore a remarkable resemblance to those detected below the SMTZ. This supports the hypothesis that the source of CH4 in surface waters is more likely to originate from ebullition than diffusion in stratified brackish coastal systems.

14.
NPJ Biofilms Microbiomes ; 9(1): 41, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349512

RESUMO

Biofilm formation is a common adaptation for microbes in energy-limited conditions such as those prevalent in the vast deep terrestrial biosphere. However, due to the low biomass and the inaccessible nature of subsurface groundwaters, the microbial populations and genes involved in its formation are understudied. Here, a flow-cell system was designed to investigate biofilm formation under in situ conditions in two groundwaters of contrasting age and geochemistry at the Äspö Hard Rock Laboratory, Sweden. Metatranscriptomes showed Thiobacillus, Sideroxydans, and Desulforegula to be abundant and together accounted for 31% of the transcripts in the biofilm communities. Differential expression analysis highlighted Thiobacillus to have a principal role in biofilm formation in these oligotrophic groundwaters by being involved in relevant processes such as the formation of extracellular matrix, quorum sensing, and cell motility. The findings revealed an active biofilm community with sulfur cycling as a prominent mode of energy conservation in the deep biosphere.


Assuntos
Água Subterrânea , Thiobacillus , Biofilmes , Suécia
15.
ISME J ; 17(6): 855-869, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977742

RESUMO

Besides long-term average temperature increases, climate change is projected to result in a higher frequency of marine heatwaves. Coastal zones are some of the most productive and vulnerable ecosystems, with many stretches already under anthropogenic pressure. Microorganisms in coastal areas are central to marine energy and nutrient cycling and therefore, it is important to understand how climate change will alter these ecosystems. Using a long-term heated bay (warmed for 50 years) in comparison with an unaffected adjacent control bay and an experimental short-term thermal (9 days at 6-35 °C) incubation experiment, this study provides new insights into how coastal benthic water and surface sediment bacterial communities respond to temperature change. Benthic bacterial communities in the two bays reacted differently to temperature increases with productivity in the heated bay having a broader thermal tolerance compared with that in the control bay. Furthermore, the transcriptional analysis showed that the heated bay benthic bacteria had higher transcript numbers related to energy metabolism and stress compared to the control bay, while short-term elevated temperatures in the control bay incubation experiment induced a transcript response resembling that observed in the heated bay field conditions. In contrast, a reciprocal response was not observed for the heated bay community RNA transcripts exposed to lower temperatures indicating a potential tipping point in community response may have been reached. In summary, long-term warming modulates the performance, productivity, and resilience of bacterial communities in response to warming.


Assuntos
Mudança Climática , Ecossistema , Temperatura , Temperatura Alta , Bactérias/genética
16.
Nat Commun ; 14(1): 42, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596795

RESUMO

Coastal ecosystems can efficiently remove carbon dioxide (CO2) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH4) emissions from these ecosystems may counterbalance atmospheric CO2 uptake. Still, knowledge of mechanisms sustaining such CH4 emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats. Here we show that these habitats emit CH4 in the range of 0.1 - 2.9 mg CH4 m-2 d-1 to the atmosphere, revealing in situ CH4 emissions from macroalgae that were sustained by divergent methanogenic archaea in anoxic microsites. Over an annual cycle, CO2-equivalent CH4 emissions offset 28 and 35% of the carbon sink capacity attributed to atmospheric CO2 uptake in the macroalgae and mixed vegetation habitats, respectively, and augment net CO2 release of unvegetated sediments by 57%. Accounting for CH4 alongside CO2 sea-air fluxes and identifying the mechanisms controlling these emissions is crucial to constrain the potential of coastal ecosystems as net atmospheric carbon sinks and develop informed climate mitigation strategies.


Assuntos
Dióxido de Carbono , Ecossistema , Metano , Mudança Climática , Sequestro de Carbono , Áreas Alagadas
17.
PLoS One ; 17(11): e0278070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417463

RESUMO

Detritivores are essential to nutrient cycling, but are often neglected in trophic networks, due to difficulties with determining their diet. DNA analysis of gut contents shows promise of trophic link discrimination, but many unknown factors limit its usefulness. For example, DNA can be rapidly broken down, especially by digestion processes, and DNA provides only a snapshot of the gut contents at a specific time. Few studies have been performed on the length of time that prey DNA can be detected in consumer guts, and none so far using benthic detritivores. Eutrophication, along with climate change, is altering the phytoplankton communities in aquatic ecosystems, on which benthic detritivores in aphotic soft sediments depend. Nutrient-poor cyanobacteria blooms are increasing in frequency, duration, and magnitude in many water bodies, while nutrient-rich diatom spring blooms are shrinking in duration and magnitude, creating potential changes in diet of benthic detritivores. We performed an experiment to identify the taxonomy and quantify the abundance of phytoplankton DNA fragments on bivalve gut contents, and how long these fragments can be detected after consumption in the Baltic Sea clam Macoma balthica. Two common species of phytoplankton (the cyanobacteria Nodularia spumigena or the diatom Skeletonema marinoi) were fed to M. balthica from two regions (from the northern and southern Stockholm archipelago). After removing the food source, M. balthica gut contents were sampled every 24 hours for seven days to determine the number of 23S rRNA phytoplankton DNA copies and when the phytoplankton DNA could no longer be detected by quantitative PCR. We found no differences in diatom 18S rRNA gene fragments of the clams by region, but the southern clams showed significantly more cyanobacteria 16S rRNA gene fragments in their guts than the northern clams. Interestingly, the cyanobacteria and diatom DNA fragments were still detectable by qPCR in the guts of M. balthica one week after removal from its food source. However, DNA metabarcoding of the 23S rRNA phytoplankton gene found in the clam guts showed that added food (i.e. N. spumigena and S. marinoi) did not make up a majority of the detected diet. Our results suggest that these detritivorous clams therefore do not react as quickly as previously thought to fresh organic matter inputs, with other phytoplankton than large diatoms and cyanobacteria constituting the majority of their diet. This experiment demonstrates the viability of using molecular methods to determine feeding of detritivores, but further studies investigating how prey DNA signals can change over time in benthic detritivores will be needed before this method can be widely applicable to both models of ecological functions and conservation policy.


Assuntos
Bivalves , Cianobactérias , Diatomáceas , Animais , Diatomáceas/genética , Ecossistema , RNA Ribossômico 16S/genética , RNA Ribossômico 23S , Cianobactérias/genética , Bivalves/genética , Dieta , Fitoplâncton/genética , DNA
18.
Microbiome ; 10(1): 126, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965333

RESUMO

BACKGROUND: Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS: The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS: This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.


Assuntos
Microbiota , Salinidade , Carbono , Microbiota/genética , Nitrogênio , Oxigênio
19.
Front Microbiol ; 13: 873281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755995

RESUMO

Coastal marine ecosystems are some of the most diverse natural habitats while being highly vulnerable in the face of climate change. The combination of anthropogenic influence from land and ongoing climate change will likely have severe effects on the environment, but the precise response remains uncertain. This study compared an unaffected "control" Baltic Sea bay to a "heated" bay that has undergone artificial warming from cooling water release from a nuclear power plant for ~50 years. This heated the water in a similar degree to IPCC SSP5-8.5 predictions by 2100 as natural systems to study temperature-related climate change effects. Bottom water and surface sediment bacterial communities and their biogeochemical processes were investigated to test how future coastal water warming alters microbial communities; shifts seasonal patterns, such as increased algae blooming; and influences nutrient and energy cycling, including elevated respiration rates. 16S rRNA gene amplicon sequencing and geochemical parameters demonstrated that heated bay bottom water bacterial communities were influenced by increased average temperatures across changing seasons, resulting in an overall Shannon's H diversity loss and shifts in relative abundances. In contrast, Shannon's diversity increased in the heated surface sediments. The results also suggested a trend toward smaller-sized microorganisms within the heated bay bottom waters, with a 30% increased relative abundance of small size picocyanobacteria in the summer (June). Furthermore, bacterial communities in the heated bay surface sediment displayed little seasonal variability but did show potential changes of long-term increased average temperature in the interplay with related effects on bottom waters. Finally, heated bay metabolic gene predictions from the 16S rRNA gene sequences suggested raised anaerobic processes closer to the sediment-water interface. In conclusion, climate change will likely alter microbial seasonality and diversity, leading to prolonged and increased algae blooming and elevated respiration rates within coastal waters.

20.
ISME Commun ; 2(1): 21, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938692

RESUMO

Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbial communities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50 years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The system demonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction. Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer to the sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesis transcripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface, with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that may result in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energy production in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increased temperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures may amplify negative effects at the base of coastal biochemical cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA