RESUMO
Filamin A (FLNA) is a cytoplasmic actin binding protein, recently shown to be expressed as a long and short isoform. Mutations in FLNA are associated with a wide spectrum of disorders, including an X-linked form of chronic intestinal pseudo-obstruction (CIPO). However, the role of FLNA in intestinal development and function is largely unknown. In this study, we show that FLNA is expressed in the muscle layer of the small intestine from early human fetal stages. Expression of FLNA variants associated with CIPO, blocked expression of the long flna isoform and led to an overall reduction of RNA and protein levels. As a consequence, contractility of human intestinal smooth muscle cells was affected. Lastly, our transgenic zebrafish line showed that the flna long isoform is required for intestinal elongation and peristalsis. Histological analysis revealed structural and architectural changes in the intestinal smooth muscle of homozygous fish, likely triggered by the abnormal expression of intestinal smooth muscle markers. No defect in the localization or numbers of enteric neurons was observed. Taken together, our study demonstrates that the long FLNA isoform contributes to intestinal development and function. Since loss of the long FLNA isoform does not seem to affect the enteric nervous system, it likely results in a myopathic form of CIPO, bringing new insights to disease pathogenesis.
Assuntos
Pseudo-Obstrução Intestinal , Peixe-Zebra , Animais , Humanos , Filaminas/genética , Filaminas/metabolismo , Pseudo-Obstrução Intestinal/genética , Pseudo-Obstrução Intestinal/patologia , Intestinos/patologia , Isoformas de Proteínas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente ModificadosRESUMO
PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.
Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Humanos , Mutação de Sentido Incorreto/genética , Feminino , Camundongos , Masculino , Animais , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Ubiquitina-Proteína Ligases/genética , Criança , Pré-Escolar , Fenótipo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Neurônios/patologia , LactenteRESUMO
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses-often de novo-contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease.
Assuntos
Variações do Número de Cópias de DNA , Sistema Nervoso Entérico/crescimento & desenvolvimento , Redes Reguladoras de Genes , Doença de Hirschsprung/genética , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Sistema Nervoso Entérico/química , Epistasia Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Camundongos , Peixe-ZebraRESUMO
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Humanos , Recém-Nascido , Camundongos , Proteínas de Transporte/metabolismo , Cílios/patologia , Rim/metabolismo , Mutação , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/genética , Serina/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismoRESUMO
SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.
Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Mitogen-activated protein 3 kinase 7 (MAP3K7) encodes the ubiquitously expressed transforming growth factor ß-activated kinase 1, which plays a crucial role in many cellular processes. Mutationsin the MAP3K7 gene have been linked to two distinct disorders: frontometaphyseal dysplasia type 2 (FMD2) and cardiospondylocarpofacial syndrome (CSCF). The fact that different mutations can induce two distinct phenotypes suggests a phenotype/genotype correlation, but no side-by-side comparison has been done thus far to confirm this. Here, we significantly expand the cohort and the description of clinical phenotypes for patients with CSCF and FMD2 who carry mutations in MAP3K7. Our findings support that in contrast to FMD2-causing mutations, CSCF-causing mutations in MAP3K7 have a loss-of-function effect. Additionally, patients with pathogenic mutations in MAP3K7 are at risk for (severe) cardiac disease, have symptoms associated with connective tissue disease, and we show overlap in clinical phenotypes of CSCF with Noonan syndrome (NS). Together, we confirm a molecular fingerprint of FMD2- versus CSCF-causing MAP3K7 mutations and conclude that mutations in MAP3K7 should be considered in the differential diagnosis of patients with syndromic congenital cardiac defects and/or cardiomyopathy, syndromic connective tissue disorders, and in the differential diagnosis of NS.
Assuntos
Anormalidades Múltiplas , Síndrome de Noonan , Anormalidades Múltiplas/genética , Genótipo , Perda Auditiva Bilateral , Humanos , Insuficiência da Valva Mitral , Mutação , Síndrome de Noonan/genética , Osteosclerose , FenótipoRESUMO
SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.
Assuntos
Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Mutação , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Adolescente , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Face/anormalidades , Feminino , Deformidades Congênitas da Mão/genética , Humanos , Masculino , Micrognatismo/genética , Pescoço/anormalidades , Proteína Reelina , SíndromeRESUMO
BACKGROUND: The transepithelial transport of electrolytes, solutes, and water in the kidney is a well-orchestrated process involving numerous membrane transport systems. Basolateral potassium channels in tubular cells not only mediate potassium recycling for proper Na+,K+-ATPase function but are also involved in potassium and pH sensing. Genetic defects in KCNJ10 cause EAST/SeSAME syndrome, characterized by renal salt wasting with hypokalemic alkalosis associated with epilepsy, ataxia, and sensorineural deafness. METHODS: A candidate gene approach and whole-exome sequencing determined the underlying genetic defect in eight patients with a novel disease phenotype comprising a hypokalemic tubulopathy with renal salt wasting, disturbed acid-base homeostasis, and sensorineural deafness. Electrophysiologic studies and surface expression experiments investigated the functional consequences of newly identified gene variants. RESULTS: We identified mutations in the KCNJ16 gene encoding KCNJ16, which along with KCNJ15 and KCNJ10, constitutes the major basolateral potassium channel of the proximal and distal tubules, respectively. Coexpression of mutant KCNJ16 together with KCNJ15 or KCNJ10 in Xenopus oocytes significantly reduced currents. CONCLUSIONS: Biallelic variants in KCNJ16 were identified in patients with a novel disease phenotype comprising a variable proximal and distal tubulopathy associated with deafness. Variants affect the function of heteromeric potassium channels, disturbing proximal tubular bicarbonate handling as well as distal tubular salt reabsorption.
Assuntos
Desequilíbrio Ácido-Base/genética , Perda Auditiva Neurossensorial/genética , Hipopotassemia/genética , Nefropatias/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Alelos , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Túbulos Renais , Mutação com Perda de Função , Masculino , Camundongos , Néfrons/metabolismo , Oócitos , Linhagem , Fenótipo , RNA Mensageiro/metabolismo , Reabsorção Renal/genética , Sais/metabolismo , Sequenciamento do Exoma , Xenopus laevis , Adulto JovemRESUMO
INTRODUCTION: The aim of this retrospective cohort study was to determine the potential diagnostic yield of prenatal whole exome sequencing in fetuses with structural anomalies on expert ultrasound scans and normal chromosomal microarray results. MATERIAL AND METHODS: In the period 2013-2016, 391 pregnant women with fetal ultrasound anomalies who received normal chromosomal microarray results, were referred for additional genetic counseling and opted for additional molecular testing pre- and/or postnatally. Most of the couples received only a targeted molecular test and in 159 cases (40.7%) whole exome sequencing (broad gene panels or open exome) was performed. The results of these molecular tests were evaluated retrospectively, regardless of the time of the genetic diagnosis (prenatal or postnatal). RESULTS: In 76 of 391 fetuses (19.4%, 95% CI 15.8%-23.6%) molecular testing provided a genetic diagnosis with identification of (likely) pathogenic variants. In the majority of cases (91.1%, 73/76) the (likely) pathogenic variant would be detected by prenatal whole exome sequencing analysis. CONCLUSIONS: Our retrospective cohort study shows that prenatal whole exome sequencing, if offered by a clinical geneticist, in addition to chromosomal microarray, would notably increase the diagnostic yield in fetuses with ultrasound anomalies and would allow early diagnosis of a genetic disorder irrespective of the (incomplete) fetal phenotype.
Assuntos
Anormalidades Múltiplas/diagnóstico , Transtornos Cromossômicos/diagnóstico , Sequenciamento do Exoma/métodos , Doenças Fetais/diagnóstico , Testes Genéticos/métodos , Diagnóstico Pré-Natal/métodos , Anormalidades Múltiplas/genética , Adulto , Transtornos Cromossômicos/genética , Feminino , Doenças Fetais/genética , Humanos , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal/métodosRESUMO
Patients with Hirschsprung disease (HSCR) do not always receive a genetic diagnosis after routine screening in clinical practice. One of the reasons for this could be that the causal mutation is not present in the cell types that are usually tested-whole blood, dermal fibroblasts or saliva-but is only in the affected tissue. Such mutations are called somatic, and can occur in a given cell at any stage of development after conception. They will then be present in all subsequent daughter cells. Here, we investigated the presence of somatic mutations in HSCR patients. For this, whole-exome sequencing and copy number analysis were performed in DNA isolated from purified enteric neural crest cells (ENCCs) and blood or fibroblasts of the same patient. Variants identified were subsequently validated by Sanger sequencing. Several somatic variants were identified in all patients, but causative mutations for HSCR were not specifically identified in the ENCCs of these patients. Larger copy number variants were also not found to be specific to ENCCs. Therefore, we believe that somatic mutations are unlikely to be identified, if causative for HSCR. Here, we postulate various modes of development following the occurrence of a somatic mutation, to describe the challenges in detecting such mutations, and hypothesize how somatic mutations may contribute to 'missing heritability' in developmental defects.
Assuntos
Variações do Número de Cópias de DNA , Sistema Nervoso Entérico/metabolismo , Doença de Hirschsprung/genética , Mutação , Crista Neural/metabolismo , Criança , Pré-Escolar , Sistema Nervoso Entérico/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Crista Neural/patologia , Análise de Sequência de DNARESUMO
Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.
Assuntos
Anormalidades Craniofaciais/genética , Doença de Hirschsprung/genética , Proteínas do Tecido Nervoso/genética , Adulto , Criança , Códon sem Sentido , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Masculino , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo ÚnicoRESUMO
This study presents a broad overview of health issues and psychomotor development of 100 children with Angelman syndrome (AS), seen at the ENCORE Expertise Center for AS in Rotterdam, the Netherlands. We aimed to further delineate the phenotype of AS, to evaluate the association of the phenotype with genotype and other determinants such as epilepsy and to get insight in possible targets for intervention. We confirmed the presence of a more severe phenotype in the 15q11.2-q13 deletion subtype. Novel findings were an association of (early onset of) epilepsy with a negative effect on development, a high occurrence of nonconvulsive status epilepticus, a high rate of crouch gait in the older children with risk of deterioration of mobility, a relatively low occurrence of microcephaly, a higher mean weight for height in all genetic subtypes with a significant higher mean in the nondeletion children, and a high occurrence of hyperphagia across all genetic subtypes. Natural history data are needed to design future trials. With this large clinical cohort with structured prospective and multidisciplinary follow-up, we provide unbiased data on AS to support further intervention studies to optimize outcome and quality of life of children with AS and their family.
Assuntos
Síndrome de Angelman/genética , Epilepsia/genética , Predisposição Genética para Doença , Ubiquitina-Proteína Ligases/genética , Adolescente , Síndrome de Angelman/epidemiologia , Síndrome de Angelman/fisiopatologia , Criança , Pré-Escolar , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Epilepsia/fisiopatologia , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Hiperfagia/genética , Hiperfagia/patologia , Masculino , Microcefalia/genética , Microcefalia/patologia , Países Baixos/epidemiologia , Fenótipo , Desempenho Psicomotor/fisiologiaRESUMO
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal-contractile coupling.
Assuntos
Anormalidades Múltiplas/genética , Autoantígenos/fisiologia , Colo/anormalidades , Proteínas do Citoesqueleto/fisiologia , Pseudo-Obstrução Intestinal/genética , Proteínas Musculares/fisiologia , Bexiga Urinária/anormalidades , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Códon sem Sentido , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Recém-Nascido , Camundongos , Contração Muscular/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso/fisiologiaRESUMO
Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.
Assuntos
Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Anormalidades Craniofaciais/genética , Predisposição Genética para Doença/genética , Deformidades Congênitas da Mão/genética , Neoplasias Hematológicas/genética , Deficiência Intelectual/genética , Mutação , Unhas Malformadas/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Western Blotting , Proteínas de Transporte/metabolismo , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Criança , Pré-Escolar , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Células HEK293 , Deformidades Congênitas da Mão/metabolismo , Deformidades Congênitas da Mão/patologia , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Unhas Malformadas/metabolismo , Unhas Malformadas/patologia , Proteínas Nucleares/metabolismo , FenótipoRESUMO
Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function.
Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação , Ubiquitina Tiolesterase/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Atresia das Cóanas/diagnóstico , Atresia das Cóanas/genética , Deficiências do Desenvolvimento/diagnóstico , Feminino , Genes Ligados ao Cromossomo X , Testes Genéticos , Humanos , Deficiência Intelectual/diagnóstico , Dados de Sequência Molecular , Fenótipo , Ubiquitina Tiolesterase/metabolismo , Inativação do Cromossomo X , Adulto JovemRESUMO
BACKGROUND & AIMS: Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS: We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS: Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS: In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas Hedgehog/genética , Doença de Hirschsprung/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteína Gli3 com Dedos de Zinco/genética , Animais , Células COS , Chlorocebus aethiops , Família , Feminino , Predisposição Genética para Doença , Variação Genética , Células HEK293 , Humanos , Masculino , Morfolinos , Países Baixos , Linhagem , Isoformas de Proteínas , Proto-Oncogene Mas , Análise de Sequência de DNA , Transdução de Sinais , Peixe-ZebraRESUMO
Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin γ-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.
Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Colo/anormalidades , Mucosa Intestinal/metabolismo , Pseudo-Obstrução Intestinal/genética , Contração Muscular/genética , Músculo Liso/metabolismo , Mutação de Sentido Incorreto , Bexiga Urinária/anormalidades , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Actinas/química , Actinas/metabolismo , Colo/metabolismo , Colo/patologia , Evolução Fatal , Feminino , Expressão Gênica , Heterozigoto , Humanos , Recém-Nascido , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Intestinos/patologia , Masculino , Simulação de Dinâmica Molecular , Músculo Liso/patologia , Linhagem , Multimerização Proteica , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Adulto JovemRESUMO
Liddle syndrome is an autosomal dominant form of hypokalemic hypertension due to mutations in the ß- or γ-subunit of the epithelial sodium channel (ENaC). Here, we describe a family with Liddle syndrome due to a mutation in αENaC. The proband was referred because of resistant hypokalemic hypertension, suppressed renin and aldosterone, and no mutations in the genes encoding ß- or γENaC. Exome sequencing revealed a heterozygous, nonconservative T>C single-nucleotide mutation in αENaC that substituted Cys479 with Arg (C479R). C479 is a highly conserved residue in the extracellular domain of ENaC and likely involved in a disulfide bridge with the partner cysteine C394. In oocytes, the C479R and C394S mutations resulted in similar twofold increases in amiloride-sensitive ENaC current. Quantification of mature cleaved αENaC in membrane fractions showed that the number of channels did not increase with these mutations. Trypsin, which increases open probability of the channel by proteolytic cleavage, resulted in significantly higher currents in the wild type than in C479R or C394S mutants. In summary, a mutation in the extracellular domain of αENaC causes Liddle syndrome by increasing intrinsic channel activity. This mechanism differs from that of the ß- and γ-mutations, which result in an increase in channel density at the cell surface. This mutation may explain other cases of patients with resistant hypertension and also provides novel insight into ENaC activation, which is relevant for kidney sodium reabsorption and salt-sensitive hypertension.
Assuntos
Canais Epiteliais de Sódio/genética , Síndrome de Liddle/genética , Mutação de Sentido Incorreto , Humanos , LinhagemRESUMO
Abnormal development or disturbed functioning of the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, is associated with the development of neuropathic gastrointestinal motility disorders. Here, we review the underlying molecular basis of these disorders and hypothesize that many of them have a common defective biological mechanism. Genetic burden and environmental components affecting this common mechanism are ultimately responsible for disease severity and symptom heterogeneity. We believe that they act together as the fulcrum in a seesaw balanced with harmful and protective factors, and are responsible for a continuum of symptoms ranging from neuronal hyperplasia to absence of neurons.
Assuntos
Sistema Nervoso Entérico/patologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/patologia , Interação Gene-Ambiente , Sistema Nervoso Entérico/crescimento & desenvolvimento , Motilidade Gastrointestinal/genética , Doença de Hirschsprung/genética , Humanos , Miócitos de Músculo Liso/fisiologiaRESUMO
STUDY QUESTION: Are anorectal malformations (ARMs) associated with previous miscarriages or single nucleotide polymorphisms (SNPs) in the Bone Morphogenetic Protein 4 (BMP4) and GLI family zinc finger 2 (GLI2) genes? SUMMARY ANSWER: The SNP rs3738880 in GLI2 and miscarriages were associated with ARM, especially in patients with multiple congenital anomalies (MCA). WHAT IS KNOWN ALREADY: ARM are one of the most common birth defects of the gastrointestinal tract. The etiology is likely to be multifactorial, involving both environmental and genetic factors. SNPs in BMP4 and GLI2 genes were associated with ARM in non-Caucasian populations. During a patient information day, several mothers of ARM patients reported their concerns about previous miscarriages. STUDY DESIGN, SIZE, DURATION: A case-control study was performed among 427 ARM patients and 663 population-based controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: We examined the associations of ARM with SNPs in GLI2 and BMP4 using DNA samples of the children and associations with previous miscarriages using parental questionnaires. In addition, gene-gene and gene-environment interaction analyses were performed. MAIN RESULTS AND THE ROLE OF CHANCE: The SNP rs3738880 in GLI2 was associated with ARM, especially in patients with MCA (homozygous GG-genotype: odds ratio (OR): 2.1; 95% CI: 1.2, 3.7). We identified previous miscarriages as a new risk factor for ARM, especially when occurring in the pregnancy directly preceding the index pregnancy and in patients with MCA (OR: 2.1; 95% CI: 1.3, 3.5). No association with rs17563 in BMP4, nor gene-gene or gene-environment interactions were found. LIMITATIONS, REASONS FOR CAUTION: The possibility of recall errors for previous miscarriage, but we expect these errors to be limited, as a miscarriage is a major life event. In addition, potential misclassification regarding miscarriages and stillbirth, but sensitivity analyses showed that this did not influence our results. WIDER IMPLICATIONS OF THE FINDINGS: This study showed associations of ARM with rs3738880 in GLI2 and with previous miscarriages. Both associations were stronger in patients with MCA, showing the importance of stratifying the analyses by patients with isolated ARM or MCA. STUDY FUNDING/COMPETING INTERESTS: This study was funded by the Radboudumc. The authors have no conflict of interest to disclose.