Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(7): 1052-1053, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37308666
2.
Nat Immunol ; 14(7): 699-705, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666294

RESUMO

Activating and inhibitory receptors on natural killer (NK) cells have a crucial role in innate immunity, although the basis of the engagement of activating NK cell receptors is unclear. The activating receptor Ly49H confers resistance to infection with murine cytomegalovirus by binding to the 'immunoevasin' m157. We found that m157 bound to the helical stalk of Ly49H, whereby two m157 monomers engaged the Ly49H dimer. The helical stalks of Ly49H lay centrally across the m157 platform, whereas its lectin domain was not required for recognition. Instead, m157 targeted an 'aromatic peg motif' present in stalks of both activating and inhibitory receptors of the Ly49 family, and substitution of this motif abrogated binding. Furthermore, ligation of m157 to Ly49H or Ly49C resulted in intracellular signaling. Accordingly, m157 has evolved to 'tackle the legs' of a family of NK cell receptors.


Assuntos
Infecções por Herpesviridae/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos , Ressonância de Plasmônio de Superfície
3.
PLoS Biol ; 20(8): e3001758, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998206

RESUMO

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Etnicidade , Fezes , Feminino , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , Viroma
4.
Gene Ther ; 31(1-2): 56-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37612361

RESUMO

Gene Therapy Medicinal Products consist of a recombinant nucleic acid intended for the modulation or manipulation of a genetic sequence. A single administration of a novel gene therapy has the potential to be curative, with a durable long-term benefit to patients. Adeno-associated viral vectors have become the viral vector of choice for in vivo delivery of therapeutic transgenes as they are mildly immunogenic, can effectively transduce a variety of human tissues and cells, and have low levels of genomic integration. Central to the effective translation of data generated in discovery studies to the clinic is the selection of appropriate animal species for pivotal non-clinical studies. This review aims to support the selection of appropriate animal models for non-clinical studies to advance the development of novel adeno-associated virus gene therapies.


Assuntos
Terapia Genética , Vetores Genéticos , Animais , Humanos , Transgenes , Vetores Genéticos/genética , Modelos Animais , Dependovirus/genética , Técnicas de Transferência de Genes
5.
Nat Immunol ; 13(12): 1171-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142773

RESUMO

The development and function of natural killer (NK) cells is regulated by the interaction of inhibitory receptors of the Ly49 family with distinct peptide-laden major histocompatibility complex (MHC) class I molecules, although whether the Ly49 family is able bind to other MHC class I-like molecules is unclear. Here we found that the prototypic inhibitory receptor Ly49A bound the highly conserved nonclassical MHC class I molecule H2-M3 with an affinity similar to its affinity for H-2D(d). The specific recognition of H2-M3 by Ly49A regulated the 'licensing' of NK cells and mediated 'missing-self' recognition of H2-M3-deficient bone marrow. Host peptide-H2-M3 was required for optimal NK cell activity against experimental metastases and carcinogenesis. Thus, nonclassical MHC class I molecules can act as cognate ligands for Ly49 molecules. Our results provide insight into the various mechanisms that lead to NK cell tolerance.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Antígenos de Histocompatibilidade Classe I/genética , Tolerância Imunológica , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Glob Chang Biol ; 30(1): e17084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273567

RESUMO

Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.


Assuntos
Sedimentos Geológicos , Invertebrados , Animais , Invertebrados/fisiologia , Água Doce , Rios , Nova Zelândia , Ecossistema , Biodiversidade , Monitoramento Ambiental
7.
Immunity ; 43(3): 554-65, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26297566

RESUMO

The dynamics of when and where CD4(+) T cells provide help for CD8(+) T cell priming and which dendritic cells (DCs) activate CD4(+) T cells in vivo after localized infection are poorly understood. By using a cutaneous herpes simplex virus infection model combined with intravital 2-photon imaging of the draining lymph node (LN) to concurrently visualize pathogen-specific CD4(+) and CD8(+) T cells, we found that early priming of CD4(+) T cells involved clustering with migratory skin DCs. CD8(+) T cells did not interact with migratory DCs and their activation was delayed, requiring later clustering interactions with LN-resident XCR1(+) DCs. CD4(+) T cells interacted with these late CD8(+) T cell clusters on resident XCR1(+) DCs. Together, these data reveal asynchronous T cell activation by distinct DC subsets and highlight the key role of XCR1(+) DCs as the central platform for cytotoxic T lymphocyte activation and the delivery of CD4(+) T cell help.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/química , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Interações Hospedeiro-Patógeno/imunologia , Linfonodos/citologia , Linfonodos/virologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Rodaminas/química , Simplexvirus/imunologia , Simplexvirus/fisiologia
8.
J Environ Manage ; 357: 120688, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552511

RESUMO

The strategic reduction and remediation of degraded land is a global environmental priority. This is a particular priority in the Great Barrier Reef catchment area, Australia, where gully erosion a significant contributor to land degradation and water quality deterioration. Urgent action through the prioritisation and remediation of gully erosion sites is imperative to safeguard this UNESCO World Heritage site. In this study, we analyze a comprehensive dataset of 22,311 mapped gullies within a 3480 km2 portion of the lower Burdekin Basin, northeast Australia. Utilizing high-resolution lidar datasets, two independent methods - Minimum Contemporary Estimate (MCE) and Lifetime Average Estimate (LAE) - were developed to derive relative erosion rates. These methods, employing different data processing approaches and addressing different timeframes across the gully lifetime, yield erosion rates varying by up to several orders of magnitude. Despite some expected divergence, both methods exhibit strong, positive correlations with each other and additional validation data. There is a 43% agreement between the methods for the highest yielding 2% of gullies, although 80.5% of high-yielding gullies identified by either method are located within a 1 km proximity of each other. Importantly, distributions from both methods independently reveal that ∼80% of total volume of gully erosion in the study area is produced from only 20% of all gullies. Moreover, the top 2% of gullies generate 30% of the sediment loss and the majority of gullies do not significantly contribute to the overall catchment sediment yield. These results underscore the opportunity to achieve significant environmental outcomes through targeted gully management by prioritising a small cohort of high yielding gullies. Further insights and implications for management frameworks are discussed in the context of the characteristics of this cohort. Overall, this research provides a basis for informed decision-making in addressing gully erosion and advancing environmental conservation efforts.


Assuntos
Conservação dos Recursos Naturais , Solo , Humanos , Conservação dos Recursos Naturais/métodos , Qualidade da Água , Austrália
9.
Immunol Cell Biol ; 101(5): 383-396, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744765

RESUMO

Many interferon (IFN)-stimulated genes are upregulated within host cells following infection with influenza and other viruses. While the antiviral activity of some IFN-stimulated genes, such as the IFN-inducible GTPase myxoma resistance (Mx)1 protein 1, has been well defined, less is known regarding the antiviral activities of related IFN-inducible GTPases of the guanylate-binding protein (GBP) family, particularly mouse GBPs, where mouse models can be used to assess their antiviral properties in vivo. Herein, we demonstrate that mouse GBP1 (mGBP1) was upregulated in a mouse airway epithelial cell line (LA-4 cells) following pretreatment with mouse IFNα or infection by influenza A virus (IAV). Whereas doxycycline-inducible expression of mouse Mx1 (mMx1) in LA-4 cells resulted in reduced susceptibility to IAV infection and reduced viral growth, inducible mGBP1 did not. Moreover, primary cells isolated from mGBP1-deficient mice (mGBP1-/- ) showed no difference in susceptibility to IAV and mGBP1-/- macrophages showed no defect in IAV-induced NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. After intranasal IAV infection, mGBP1-/- mice also showed no differences in virus replication or induction of inflammatory responses in the airways during infection. Thus, using complementary approaches such as mGBP1 overexpression, cells from mGBP1-/- mice and intranasal infection of mGBP1-/- we demonstrate that mGBP1 does not play a major role in modulating IAV infection in vitro or in vivo.


Assuntos
Proteínas de Ligação ao GTP , Influenza Humana , Animais , Humanos , Camundongos , Antivirais/metabolismo , Vírus da Influenza A , Influenza Humana/genética , Interferons/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação ao GTP/metabolismo
10.
J Virol ; 96(12): e0041922, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638820

RESUMO

Myxovirus resistance (Mx) proteins are dynamin-like GTPases that are inducible by interferons (IFNs) following virus infections. Most studies investigating Mx proteins have focused on their activity against influenza A viruses (IAV), although emerging evidence suggests that some Mx proteins may exhibit broader antiviral activity. Herein, we demonstrate that in addition to IAV, overexpression of mouse Mx1 (mMx1), but not mMx2, resulted in potent inhibition of growth of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, whereas neither inhibited the mouse betaherpesvirus murine cytomegalovirus (MCMV) in vitro. IFN induction of a functional endogenous mMx1 in primary mouse fibroblasts ex vivo was also associated with inhibition of HSV-1 growth. Using an in vitro overexpression approach, we demonstrate that mutations that result in redistribution of mMx1 from the nucleus to the cytoplasm or in loss of its combined GTP binding and GTPase activity also abrogated its ability to inhibit HSV-1 growth. Overexpressed mMx1 did not inhibit early HSV-1 gene expression but was shown to inhibit both replication of the HSV-1 genome as well as subsequent late gene expression. In a mouse model of cutaneous HSV-1 infection, mice expressing a functional endogenous mMx1 showed significant reductions in the severity of skin lesions as well as reduced HSV-1 titers in both the skin and dorsal root ganglia (DRG). Together, these data demonstrate that mMx1 mediates potent antiviral activity against human alphaherpesviruses by blocking replication of the viral genome and subsequent steps in virus replication. Moreover, endogenous mMx1 potently inhibited pathogenesis in the zosteriform mouse model of HSV-1 infection. IMPORTANCE While a number of studies have demonstrated that human Mx proteins can inhibit particular herpesviruses in vitro, we are the first to report the antiviral activity of mouse Mx1 (mMx1) against alphaherpesviruses both in vitro and in vivo. We demonstrate that both overexpressed mMx1 and endogenous mMx1 potently restrict HSV-1 growth in vitro. mMx1-mediated inhibition of HSV-1 was not associated with inhibition of virus entry and/or import of the viral genome into the nucleus, but rather with inhibition of HSV-1 genomic replication as well as subsequent late gene expression. Therefore, inhibition of human alphaherpesviruses by mMx1 occurs by a mechanism that is distinct from that reported for human Mx proteins against herpesviruses. Importantly, we also provide evidence that expression of a functional endogenous mMx1 can limit HSV-1 pathogenesis in a mouse model of infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas de Resistência a Myxovirus , Replicação Viral , Animais , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Camundongos , Muromegalovirus , Proteínas de Resistência a Myxovirus/metabolismo
11.
J Virol ; 96(16): e0055922, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35916513

RESUMO

Intracellular RIG-I receptors represent key innate sensors of RNA virus infection, and RIG-I activation results in the induction of hundreds of host effector genes, including interferon-stimulated genes (ISGs). Synthetic RNA agonists targeting RIG-I have shown promise as antivirals against a broad spectrum of viruses, including influenza A virus (IAV), in both in vitro and mouse models of infection. Herein, we demonstrate that treatment of a ferret airway epithelial (FRL) cell line with a RIG-I agonist rapidly and potently induced expression of a broad range of ISGs and resulted in potent inhibition of growth of different IAV strains. In ferrets, a single intravenous injection of RIG-I agonist was associated with upregulated ISG expression in peripheral blood mononuclear cells and lung tissue, but not in nasal tissues. In a ferret model of viral contact transmission, a single treatment of recipient animals 24 h prior to cohousing with IAV-infected donors did not reduce virus transmission and shedding but did result in reduced lung virus titers 6 days after treatment. A single treatment of the IAV-infected donor animals also resulted in reduced virus titers in the lungs 2 days later. Thus, a single intravenous treatment with RIG-I agonist prior to infection or to ferrets with an established IAV infection can reduce virus growth in the lungs. These findings support further development of RIG-I agonists as effective antiviral treatments to limit the impact of IAV infections, particularly in reducing virus replication in the lower airways. IMPORTANCE RIG-I agonists have shown potential as broad-spectrum antivirals in vitro and in mouse models of infection. However, their antiviral potential has not been reported in outbred animals such as ferrets, which are widely regarded as the gold standard small animal model for human IAV infections. Herein, we demonstrate that RIG-I agonist treatment of a ferret airway cell line resulted in ISG induction and inhibition of a broad range of human influenza viruses. A single intravenous treatment of ferrets also resulted in systemic induction of ISGs, including in lung tissue, and when delivered to animals prior to IAV exposure or to animals with established IAV infection treatment resulted in reduced virus replication in the lungs. These data demonstrate the effectiveness of single RIG-I treatment against IAV in the ferret model and highlight the importance of future studies to optimize treatment regimens and delivery routes to maximize their ability to ameliorate IAV infections.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Antivirais/farmacologia , Furões/metabolismo , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Interferons/metabolismo , Leucócitos Mononucleares/metabolismo , Pulmão , Camundongos , Replicação Viral/genética
12.
Nat Immunol ; 12(7): 616-23, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21666690

RESUMO

Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.


Assuntos
Galactosilceramidas/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Adjuvantes Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Antígenos CD1d/imunologia , Linhagem Celular , Galactosilceramidas/farmacologia , Glucuronatos/imunologia , Humanos , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T alfa-beta/genética
13.
J Immunol ; 206(4): 849-860, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33441440

RESUMO

HLA class I molecules that represent ligands for the inhibitory killer cell Ig-like receptor (KIR) 3DL1 found on NK cells are categorically defined as those HLA-A and HLA-B allotypes containing the Bw4 motif, yet KIR3DL1 demonstrates hierarchical recognition of these HLA-Bw4 ligands. To better understand the molecular basis underpinning differential KIR3DL1 recognition, the HLA-ABw4 family of allotypes were investigated. Transfected human 721.221 cells expressing HLA-A*32:01 strongly inhibited primary human KIR3DL1+ NK cells, whereas HLA-A*24:02 and HLA-A*23:01 displayed intermediate potency and HLA-A*25:01 failed to inhibit activation of KIR3DL1+ NK cells. Structural studies demonstrated that recognition of HLA-A*24:02 by KIR3DL1 used identical contacts as the potent HLA-B*57:01 ligand. Namely, the D1-D2 domains of KIR3DL1 were placed over the α1 helix and α2 helix of the HLA-A*24:02 binding cleft, respectively, whereas the D0 domain contacted the side of the HLA-A*24:02 molecule. Nevertheless, functional analyses showed KIR3DL1 recognition of HLA-A*24:02 was more sensitive to substitutions within the α2 helix of HLA-A*24:02, including residues Ile142 and Lys144 Furthermore, the presence of Thr149 in the α2 helix of HLA-A*25:01 abrogated KIR3DL1+ NK inhibition. Together, these data demonstrate a role for the HLA class I α2 helix in determining the hierarchy of KIR3DL1 ligands. Thus, recognition of HLA class I is dependent on a complex interplay between the peptide repertoire, polymorphisms within and proximal to the Bw4 motif, and the α2 helix. Collectively, the data furthers our understanding of KIR3DL1 ligands and will inform genetic association and immunogenetics studies examining the role of KIR3DL1 in disease settings.


Assuntos
Antígenos HLA-A , Células Matadoras Naturais , Receptores KIR3DL1 , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Humanos , Células Matadoras Naturais/química , Células Matadoras Naturais/imunologia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Receptores KIR3DL1/química , Receptores KIR3DL1/imunologia
14.
Proc Natl Acad Sci U S A ; 117(21): 11636-11647, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32404419

RESUMO

Micropolymorphisms within human leukocyte antigen (HLA) class I molecules can change the architecture of the peptide-binding cleft, leading to differences in peptide presentation and T cell recognition. The impact of such HLA variation on natural killer (NK) cell recognition remains unclear. Given the differential association of HLA-B*57:01 and HLA-B*57:03 with the control of HIV, recognition of these HLA-B57 allomorphs by the killer cell immunoglobulin-like receptor (KIR) 3DL1 was compared. Despite differing by only two polymorphic residues, both buried within the peptide-binding cleft, HLA-B*57:01 more potently inhibited NK cell activation. Direct-binding studies showed KIR3DL1 to preferentially recognize HLA-B*57:01, particularly when presenting peptides with positively charged position (P)Ω-2 residues. In HLA-B*57:01, charged PΩ-2 residues were oriented toward the peptide-binding cleft and away from KIR3DL1. In HLA-B*57:03, the charged PΩ-2 residues protruded out from the cleft and directly impacted KIR3DL1 engagement. Accordingly, KIR3DL1 recognition of HLA class I ligands is modulated by both the peptide sequence and conformation, as determined by the HLA polymorphic framework, providing a rationale for understanding differences in clinical associations.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais/fisiologia , Polimorfismo Genético/genética , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Ativação Linfocitária/genética , Modelos Moleculares , Polimorfismo Genético/fisiologia , Receptores KIR/genética
15.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569596

RESUMO

Immune surveillance by natural killer (NK) cells and their recruitment to sites of inflammation renders them susceptible to viral infection, potentially modulating their effector function. Here, we analyzed innate RNA receptor signaling in NK cells downstream of direct Influenza A virus (IAV) infection and its impact on NK cell effector function. Infection of NK cells with IAV resulted in the activation of TBK1, NF-Ï°B and subsequent type-I IFN secretion. CRISPR-generated knockouts in primary human NK cells revealed that this effect depended on the antiviral cytosolic RNA receptor RIG-I. Transfection of NK cells with synthetic 3p-dsRNA, a strong RIG-I agonist that mimics viral RNA, resulted in a similar phenotype and rendered NK cells resistant to subsequent IAV infection. Strikingly, both IAV infection and 3p-dsRNA transfection enhanced degranulation and cytokine production by NK cells when exposed to target cells. Thus, RIG-I activation in NK cells both supports their cell intrinsic viral defense and enhances their cytotoxic effector function against target cells.


Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Humanos , Vírus da Influenza A/fisiologia , Células Matadoras Naturais , RNA
16.
J Infect Dis ; 226(12): 2079-2088, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35861054

RESUMO

Infections caused by human respiratory syncytial virus (RSV) are associated with substantial rates of morbidity and mortality. Treatment options are limited, and there is urgent need for the development of efficient antivirals. Pattern recognition receptors such as the cytoplasmic helicase retinoic acid-inducible gene (RIG) I can be activated by viral nucleic acids, leading to activation of interferon-stimulated genes and generation of an "antiviral state." In the current study, we activated RIG-I with synthetic RNA agonists (3pRNA) to induce resistance to RSV infection in vitro and in vivo. In vitro, pretreatment of human, mouse, and ferret airway cell lines with RIG-I agonist before RSV exposure inhibited virus infection and replication. Moreover, a single intravenous injection of 3pRNA 1 day before RSV infection resulted in potent inhibition of virus replication in the lungs of mice and ferrets, but not in nasal tissues. These studies provide evidence that RIG-I agonists represent a promising antiviral drug for RSV prophylaxis.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Humanos , Vírus Sincicial Respiratório Humano/fisiologia , Furões , Pulmão , Replicação Viral , Antivirais/farmacologia , Tretinoína
17.
J Virol ; 95(20): e0083721, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319159

RESUMO

Interferon-induced transmembrane (IFITM) proteins inhibit a broad range of enveloped viruses by blocking entry into host cells. We used an inducible overexpression system to investigate if IFITM1, IFITM2, and IFITM3 could modulate early and/or late stages of influenza A virus (IAV) or parainfluenza virus 3 (PIV-3) infection in human A549 airway epithelial cells. IAV and PIV-3 represent respiratory viruses which utilize distinct cellular entry pathways. We verify entry by endocytosis for IAV, whereas PIV-3 infection was consistent with fusion at the plasma membrane. Following induction prior to infection, all three IFITM proteins restricted the percentage of IAV-infected cells at 8 hours postinfection. In contrast, prior induction of IFITM1 and IFITM2 did not inhibit PIV-3 infection, although a modest reduction was observed with IFITM3. Small interfering RNA (siRNA)-mediated knockdown of endogenous IFITM1, IFITM2, and IFITM3 expression, in the presence or absence of pretreatment with type I interferon, resulted in increased IAV, but not PIV-3, infection. This finding suggests that while all three IFITMs display antiviral activity against IAV, they do not restrict the early stages of PIV-3 infection. IAV and PIV-3 infection culminates in viral egress through budding at the plasma membrane. Inducible expression of IFITM1, IFITM2, or IFITM3 immediately after infection did not impact titers of infectious virus released from IAV- or PIV-3-infected cells. Our findings show that IFITM proteins differentially restrict the early stages of infection of two respiratory viruses with distinct cellular entry pathways but do not influence the late stages of replication for either virus. IMPORTANCE Interferon-induced transmembrane (IFITM) proteins restrict the initial stages of infection for several respiratory viruses; however, their potential to modulate the later stages of virus replication has not been explored. In this study, we highlight the utility of an inducible overexpression system to assess the impact of IFITM proteins on either early- or late-stage replication of two respiratory viruses. We demonstrate antiviral activity by IFITM1, IFITM2, and IFITM3 against influenza A virus (IAV) but not parainfluenza virus 3 (PIV-3) during the early stages of cellular infection. Furthermore, IFITM induction following IAV or PIV-3 infection does not restrict the late stages of replication of either virus. Our findings show that IFITM proteins can differentially restrict the early stages of infection of two viruses with distinct cellular entry pathways and yet do not influence the late stages of replication for either virus.


Assuntos
Viroses/metabolismo , Replicação Viral/fisiologia , Células A549 , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endocitose/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Vírus da Parainfluenza 3 Humana/metabolismo , Vírus da Parainfluenza 3 Humana/patogenicidade , Proteínas de Ligação a RNA/metabolismo , Internalização do Vírus
18.
BMC Microbiol ; 22(1): 301, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36510121

RESUMO

BACKGROUND: Large-scale gut microbiome sequencing has revealed key links between microbiome dysfunction and metabolic diseases such as type 2 diabetes (T2D). To date, these efforts have largely focused on Western populations, with few studies assessing T2D microbiota associations in Middle Eastern communities where T2D prevalence is now over 20%. We analyzed the composition of stool 16S rRNA from 461 T2D and 119 non-T2D participants from the Eastern Province of Saudi Arabia. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples based on diabetes status and glucose level. RESULTS: In this study we performed the largest microbiome study ever conducted in Saudi Arabia, as well as the first-ever characterization of gut microbiota T2D versus non-T2D in this population. We observed overall positive enrichment within diabetics compared to healthy individuals and amongst diabetic participants; those with high glucose levels exhibited slightly more positive enrichment compared to those at lower risk of fasting hyperglycemia. In particular, the genus Firmicutes was upregulated in diabetic individuals compared to non-diabetic individuals, and T2D was associated with an elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings. CONCLUSION: Based on diabetes status and glucose levels of Saudi participants, relatively stable differences in stool composition were perceived by differential abundance and alpha diversity measures. However, community level differences are evident in the Saudi population between T2D and non-T2D individuals, and diversity patterns appear to vary from well-characterized microbiota from Western cohorts. Comparing overlapping and varying patterns in gut microbiota with other studies is critical to assessing novel treatment options in light of a rapidly growing T2D health epidemic in the region. As a rapidly emerging chronic condition in Saudi Arabia and the Middle East, T2D burdens have grown more quickly and affect larger proportions of the population than any other global region, making a regional reference T2D-microbiome dataset critical to understanding the nuances of disease development on a global scale.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Glucose
19.
Hepatology ; 73(2): 759-775, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32342533

RESUMO

BACKGROUND AND AIMS: Growth hormone (GH) is important for liver regeneration after partial hepatectomy (PHx). We investigated this process in C57BL/6 mice that express different forms of the GH receptor (GHR) with deletions in key signaling domains. APPROACH AND RESULTS: PHx was performed on C57BL/6 mice lacking GHR (Ghr-/- ), disabled for all GH-dependent Janus kinase 2 signaling (Box1-/- ), or lacking only GH-dependent signal transducer and activator of transcription 5 (STAT5) signaling (Ghr391-/- ), and wild-type littermates. C57BL/6 Ghr-/- mice showed striking mortality within 48 hours after PHx, whereas Box1-/- or Ghr391-/- mice survived with normal liver regeneration. Ghr-/- mortality was associated with increased apoptosis and elevated natural killer/natural killer T cell and macrophage cell markers. We identified H2-Bl, a key immunotolerance protein, which is up-regulated by PHx through a GH-mediated, Janus kinase 2-independent, SRC family kinase-dependent pathway. GH treatment was confirmed to up-regulate expression of the human homolog of H2-Bl (human leukocyte antigen G [HLA-G]) in primary human hepatocytes and in the serum of GH-deficient patients. We find that injury-associated innate immune attack by natural killer/natural killer T cell and macrophage cells are instrumental in the failure of liver regeneration, and this can be overcome in Ghr-/- mice by adenoviral delivery of H2-Bl or by infusion of HLA-G protein. Further, H2-Bl knockdown in wild-type C57BL/6 mice showed elevated markers of inflammation after PHx, whereas Ghr-/- backcrossed on a strain with high endogenous H2-Bl expression showed a high rate of survival following PHx. CONCLUSIONS: GH induction of H2-Bl expression is crucial for reducing innate immune-mediated apoptosis and promoting survival after PHx in C57BL/6 mice. Treatment with HLA-G may lead to improved clinical outcomes following liver surgery or transplantation.


Assuntos
Hormônio do Crescimento/deficiência , Antígenos H-2/metabolismo , Antígenos HLA-G/metabolismo , Regeneração Hepática/imunologia , Fígado/fisiologia , Animais , Apoptose/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Técnicas de Cocultura , Técnicas de Silenciamento de Genes , Antígenos H-2/genética , Antígenos HLA-G/genética , Antígenos HLA-G/isolamento & purificação , Hepatectomia , Hepatócitos , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fígado/cirurgia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Blood ; 135(4): 287-292, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31697803

RESUMO

The single transmembrane domain (TMD) of the human thrombopoietin receptor (TpoR/myeloproliferative leukemia [MPL] protein), encoded by exon 10 of the MPL gene, is a hotspot for somatic mutations associated with myeloproliferative neoplasms (MPNs). Approximately 6% and 14% of JAK2 V617F- essential thrombocythemia and primary myelofibrosis patients, respectively, have "canonical" MPL exon 10 driver mutations W515L/K/R/A or S505N, which generate constitutively active receptors and consequent loss of Tpo dependence. Other "noncanonical" MPL exon 10 mutations have also been identified in patients, both alone and in combination with canonical mutations, but, in almost all cases, their functional consequences and relevance to disease are unknown. Here, we used a deep mutational scanning approach to evaluate all possible single amino acid substitutions in the human TpoR TMD for their ability to confer cytokine-independent growth in Ba/F3 cells. We identified all currently recognized driver mutations and 7 novel mutations that cause constitutive TpoR activation, and a much larger number of second-site mutations that enhance S505N-driven activation. We found examples of both of these categories in published and previously unpublished MPL exon 10 sequencing data from MPN patients, demonstrating that some, if not all, of the new mutations reported here represent likely drivers or modifiers of myeloproliferative disease.


Assuntos
Substituição de Aminoácidos , Transtornos Mieloproliferativos/genética , Receptores de Trombopoetina/genética , Animais , Linhagem Celular , Éxons , Humanos , Camundongos , Modelos Moleculares , Mutação , Domínios Proteicos , Receptores de Trombopoetina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA