Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 579(7799): E10, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123354

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 578(7793): 149-153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31969710

RESUMO

On infection of their host, temperate viruses that infect bacteria (bacteriophages; hereafter referred to as phages) enter either a lytic or a lysogenic cycle. The former results in lysis of bacterial cells and phage release (resulting in horizontal transmission), whereas lysogeny is characterized by the integration of the phage into the host genome, and dormancy (resulting in vertical transmission)1. Previous co-culture experiments using bacteria and mutants of temperate phages that are locked in the lytic cycle have shown that CRISPR-Cas systems can efficiently eliminate the invading phages2,3. Here we show that, when challenged with wild-type temperate phages (which can become lysogenic), type I CRISPR-Cas immune systems cannot eliminate the phages from the bacterial population. Furthermore, our data suggest that, in this context, CRISPR-Cas immune systems are maladaptive to the host, owing to the severe immunopathological effects that are brought about by imperfect matching of spacers to the integrated phage sequences (prophages). These fitness costs drive the loss of CRISPR-Cas from bacterial populations, unless the phage carries anti-CRISPR (acr) genes that suppress the immune system of the host. Using bioinformatics, we show that this imperfect targeting is likely to occur frequently in nature. These findings help to explain the patchy distribution of CRISPR-Cas immune systems within and between bacterial species, and highlight the strong selective benefits of phage-encoded acr genes for both the phage and the host under these circumstances.


Assuntos
Bactérias/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas , Bactérias/imunologia , Bactérias/virologia , Regulação Viral da Expressão Gênica , Lisogenia/genética , Prófagos/genética
3.
Nucleic Acids Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966992

RESUMO

Correct termination of transcription is essential for gene expression. In bacteria, factor-dependent termination relies on the Rho factor, that classically has three conserved domains. Some bacteria also have a functional insertion region. However, the variation in Rho structure among bacteria has not been analyzed in detail. This study determines the distribution, sequence conservation, and predicted features of Rho factors with diverse domain architectures by analyzing 2730 bacterial genomes. About half (49.8%) of the species analyzed have the typical Escherichia coli like Rho while most of the other species (39.8%) have diverse, atypical forms of Rho. Besides conservation of the main domains, we describe a duplicated RNA-binding domain present in specific species and novel variations in the bicyclomycin binding pocket. The additional regions observed in Rho proteins exhibit remarkable diversity. Commonly, however, they have exceptional amino acid compositions and are predicted to be intrinsically disordered, to undergo phase separation, or have prion-like behavior. Phase separation has recently been shown to play roles in Rho function and bacterial fitness during harsh conditions in one species and this study suggests a more widespread role. In conclusion, diverse atypical Rho factors are broadly distributed among bacteria, suggesting additional cellular roles.

4.
Nucleic Acids Res ; 50(15): 8615-8625, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947749

RESUMO

Many bacteria use CRISPR-Cas systems to defend against invasive mobile genetic elements (MGEs). In response, MGEs have developed strategies to resist CRISPR-Cas, including the use of anti-CRISPR (Acr) proteins. Known acr genes may be followed in an operon by a putative regulatory Acr-associated gene (aca), suggesting the importance of regulation. Although ten families of helix-turn-helix (HTH) motif containing Aca proteins have been identified (Aca1-10), only three have been tested and shown to be transcriptional repressors of acr-aca expression. The AcrIIA1 protein (a Cas9 inhibitor) also contains a functionally similar HTH containing repressor domain. Here, we identified and analysed Aca and AcrIIA1 homologs across all bacterial genomes. Using HMM models we found aca-like genes are widely distributed in bacteria, both with and without known acr genes. The putative promoter regions of acr-aca operons were analysed and members of each family of bacterial Aca tested for regulatory function. For each Aca family, we predicted a conserved inverted repeat binding site within a core promoter. Promoters containing these sites directed reporter expression in E. coli and were repressed by the cognate Aca protein. These data demonstrate that acr repression by Aca proteins is widely conserved in nature.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/genética , Escherichia coli/genética , Sistemas CRISPR-Cas , Óperon/genética , Sequências Hélice-Volta-Hélice , Bactérias/genética , Proteínas de Bactérias/genética
5.
Mol Biol Evol ; 38(10): 4166-4186, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772558

RESUMO

Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron-exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.


Assuntos
Eucariotos , Evolução Molecular , Eucariotos/genética , Genoma Fúngico , Íntrons/genética , Filogenia
6.
Nucleic Acids Res ; 46(9): 4575-4591, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29684192

RESUMO

Introns in mRNA leaders are common in complex eukaryotes, but often overlooked. These introns are spliced out before translation, leaving exon-exon junctions in the mRNA leaders (leader EEJs). Our multi-omic approach shows that the number of leader EEJs inversely correlates with the main protein translation, as does the number of upstream open reading frames (uORFs). Across the five species studied, the lowest levels of translation were observed for mRNAs with both leader EEJs and uORFs (29%). This class of mRNAs also have ribosome footprints on uORFs, with strong triplet periodicity indicating uORF translation. Furthermore, the positions of both leader EEJ and uORF are conserved between human and mouse. Thus, the uORF, in combination with leader EEJ predicts lower expression for nearly one-third of eukaryotic proteins.


Assuntos
Regiões 5' não Traduzidas , Éxons , Íntrons , Biossíntese de Proteínas , Animais , Códon de Iniciação , Evolução Molecular , Células HeLa , Células Hep G2 , Humanos , Camundongos , Fases de Leitura Aberta , Splicing de RNA , Ribossomos/metabolismo
7.
RNA Biol ; 16(4): 423-434, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29995560

RESUMO

Type II CRISPR-Cas9 systems require a small RNA called the trans-activating CRISPR RNA (tracrRNA) in order to function. The prediction of these non-coding RNAs in prokaryotic genomes is challenging because they have dissimilar structures, having short stems (3-6 bp) and non-canonical base-pairs e.g. G-A. Much of the tracrRNA is involved in base-pairing interactions with the CRISPR RNA, or itself, or in RNA-protein interactions with Cas9. Here we develop a new bioinformatic tool to predict tracrRNAs. On an experimentally verified test set the algorithm achieved a high sensitivity and specificity, and a low false discovery rate (FDR) on genome analysis. Analysis of representative RefSeq genomes (5462) detected 275 tracrRNAs from 165 genera. These tracrRNAs could be grouped into 15 clusters which were used to build covariance models. These clusters included Streptococci and Staphylococci tracrRNAs from the CRISPR-Cas9 systems which are currently used for gene editing. Compensating base changes observed in the models were consistent with the experimental structures of single guide RNAs (sgRNAs). Other clusters, for which there are not yet structures available, were predicted to form novel tracrRNA folds. These clusters included a large and divergent tracrRNA set from Bacteroidetes. These computational models contribute to the understanding of CRISPR-Cas biology, and will assist in the design of further engineered CRISPR-Cas9 systems. The tracrRNA prediction software is available through a galaxy web server.


Assuntos
Sistemas CRISPR-Cas/genética , RNA/genética , Transativadores/genética , Bacteroidetes/genética , Sequência de Bases , Sequência Conservada/genética , Filogenia , Streptococcus pyogenes/genética , Máquina de Vetores de Suporte
8.
RNA Biol ; 16(4): 566-576, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30157725

RESUMO

CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against invading genetic elements, such as plasmids, bacteriophages and archaeal viruses. They consist of cas genes and CRISPR loci, which store genetic memories of previously encountered invaders as short sequences termed spacers. Spacers determine the specificity of CRISPR-Cas defence and immunity can be gained or updated by the addition of new spacers into CRISPR loci. There are two main routes to spacer acquisition, which are known as naïve and primed CRISPR adaptation. Naïve CRISPR adaptation involves the de novo formation of immunity, independent of pre-existing spacers. In contrast, primed CRISPR adaptation (priming) uses existing spacers to enhance the acquisition of new spacers. Priming typically results in spacer acquisition from locations near the site of target recognition by the existing (priming) spacer. Primed CRISPR adaptation has been observed in several type I CRISPR-Cas systems and it is potentially widespread. However, experimental evidence is unavailable for some subtypes, and for most systems, priming has only been shown in a small number of hosts. There is also no current evidence of priming by other CRISPR-Cas types. Here, we used a bioinformatic approach to search for evidence of priming in diverse CRISPR-Cas systems. By analysing the clustering of spacers acquired from phages, prophages and archaeal viruses, including strand and directional biases between subsequently acquired spacers, we demonstrate that two patterns of primed CRISPR adaptation dominate in type I systems. In addition, we find evidence of a priming-like pathway in type II CRISPR-Cas systems.


Assuntos
Adaptação Fisiológica/genética , Sistemas CRISPR-Cas/genética , Biologia Computacional/métodos , Genoma Viral , Prófagos/genética
9.
Biochem Soc Trans ; 46(6): 1615-1625, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30420414

RESUMO

Translational stop codons, UAA, UAG, and UGA, form an integral part of the universal genetic code. They are of significant interest today for their underlying fundamental role in terminating protein synthesis, but also for their potential utilisation for programmed alternative translation events. In diverse organisms, UAA has wide usage, but it is puzzling that the high fidelity UAG is selected against and yet UGA, vulnerable to suppression, is widely used, particularly in those archaeal and bacterial genomes with a high GC content. In canonical protein synthesis, stop codons are interpreted by protein release factors that structurally and functionally mimic decoding tRNAs and occupy the decoding site on the ribosome. The release factors make close contact with the decoding complex through multiple interactions. Correct interactions cause conformational changes resulting in new and enhanced contacts with the ribosome, particularly between specific bases in the mRNA and rRNA. The base following the stop codon (fourth or +4 base) may strongly influence decoding efficiency, facilitating alternative non-canonical events like frameshifting or selenocysteine incorporation. The fourth base is drawn into the decoding site with a compacted stop codon in the eukaryotic termination complex. Surprisingly, mRNA sequences upstream and downstream of this core tetranucleotide signal have a significant influence on the strength of the signal. Since nine bases downstream of the stop codon are within the mRNA channel, their interactions with rRNA, and r-proteins may affect efficiency. With this understanding, it is now possible to design stop signals of desired strength for specific applied purposes.


Assuntos
Códon de Terminação/genética , Ribossomos/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/genética
10.
BMC Genomics ; 17: 356, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184979

RESUMO

BACKGROUND: CRISPR (clustered regularly interspaced short palindromic repeats) RNAs provide the specificity for noncoding RNA-guided adaptive immune defence systems in prokaryotes. CRISPR arrays consist of repeat sequences separated by specific spacer sequences. CRISPR arrays have previously been identified in a large proportion of prokaryotic genomes. However, currently available detection algorithms do not utilise recently discovered features regarding CRISPR loci. RESULTS: We have developed a new approach to automatically detect, predict and interactively refine CRISPR arrays. It is available as a web program and command line from bioanalysis.otago.ac.nz/CRISPRDetect. CRISPRDetect discovers putative arrays, extends the array by detecting additional variant repeats, corrects the direction of arrays, refines the repeat/spacer boundaries, and annotates different types of sequence variations (e.g. insertion/deletion) in near identical repeats. Due to these features, CRISPRDetect has significant advantages when compared to existing identification tools. As well as further support for small medium and large repeats, CRISPRDetect identified a class of arrays with 'extra-large' repeats in bacteria (repeats 44-50 nt). The CRISPRDetect output is integrated with other analysis tools. Notably, the predicted spacers can be directly utilised by CRISPRTarget to predict targets. CONCLUSION: CRISPRDetect enables more accurate detection of arrays and spacers and its gff output is suitable for inclusion in genome annotation pipelines and visualisation. It has been used to analyse all complete bacterial and archaeal reference genomes.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Software , Algoritmos , Bactérias/genética , DNA Intergênico , Bases de Dados de Ácidos Nucleicos , Genoma , Genômica/métodos , Mutagênese Insercional , Mutação , Células Procarióticas/metabolismo , Deleção de Sequência , Sequências de Repetição em Tandem , Interface Usuário-Computador , Fluxo de Trabalho
11.
J Virol ; 89(11): 6057-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810556

RESUMO

UNLABELLED: Many viruses replicate most efficiently in specific phases of the cell cycle, establishing or exploiting favorable conditions for viral replication, although little is known about the relationship between caliciviruses and the cell cycle. Microarray and Western blot analysis of murine norovirus 1 (MNV-1)-infected cells showed changes in cyclin transcript and protein levels indicative of a G1 phase arrest. Cell cycle analysis confirmed that MNV-1 infection caused a prolonging of the G1 phase and an accumulation of cells in the G0/G1 phase. The accumulation in G0/G1 phase was caused by a reduction in cell cycle progression through the G1/S restriction point, with MNV-1-infected cells released from a G1 arrest showing reduced cell cycle progression compared to mock-infected cells. MNV-1 replication was compared in populations of cells synchronized into specific cell cycle phases and in asynchronously growing cells. Cells actively progressing through the G1 phase had a 2-fold or higher increase in virus progeny and capsid protein expression over cells in other phases of the cell cycle or in unsynchronized populations. These findings suggest that MNV-1 infection leads to prolonging of the G1 phase and a reduction in S phase entry in host cells, establishing favorable conditions for viral protein production and viral replication. There is limited information on the interactions between noroviruses and the cell cycle, and this observation of increased replication in the G1 phase may be representative of other members of the Caliciviridae. IMPORTANCE: Noroviruses have proven recalcitrant to growth in cell culture, limiting our understanding of the interaction between these viruses and the infected cell. In this study, we used the cell-culturable MNV-1 to show that infection of murine macrophages affects the G1/S cell cycle phase transition, leading to an arrest in cell cycle progression and an accumulation of cells in the G0/G1 phase. Furthermore, we show that MNV replication is enhanced in the G1 phase compared to other stages of the cell cycle. Manipulating the cell cycle or adapting to cell cycle responses of the host cell is a mechanism to enhance virus replication. To the best of our knowledge, this is the first report of a norovirus interacting with the host cell cycle and exploiting the favorable conditions of the G0/G1 phase for RNA virus replication.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular , Interações Hospedeiro-Patógeno , Norovirus/fisiologia , Fase de Repouso do Ciclo Celular , Replicação Viral , Animais , Western Blotting , Perfilação da Expressão Gênica , Camundongos , Análise em Microsséries
12.
RNA Biol ; 13(9): 743-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27031749

RESUMO

Many viruses contain RNA elements that modulate splicing and/or promote nuclear export of their RNAs. The RNAs of the major human pathogen, hepatitis B virus (HBV) contain a large (~600 bases) composite cis-acting 'post-transcriptional regulatory element' (PRE). This element promotes expression from these naturally intronless transcripts. Indeed, the related woodchuck hepadnavirus PRE (WPRE) is used to enhance expression in gene therapy and other expression vectors. These PRE are likely to act through a combination of mechanisms, including promotion of RNA nuclear export. Functional components of both the HBV PRE and WPRE are 2 conserved RNA cis-acting stem-loop (SL) structures, SLα and SLß. They are within the coding regions of polymerase (P) gene, and both P and X genes, respectively. Based on previous studies using mutagenesis and/or nuclear magnetic resonance (NMR), here we propose 2 covariance models for SLα and SLß. The model for the 30-nucleotide SLα contains a G-bulge and a CNGG(U) apical loop of which the first and the fourth loop residues form a CG pair and the fifth loop residue is bulged out, as observed in the NMR structure. The model for the 23-nucleotide SLß contains a 7-base-pair stem and a 9-nucleotide loop. Comparison of the models with other RNA structural elements, as well as similarity searches of human transcriptome and viral genomes demonstrate that SLα and SLß are specific to HBV transcripts. However, they are well conserved among the hepadnaviruses of non-human primates, the woodchuck and ground squirrel.


Assuntos
Genoma Viral , Vírus da Hepatite B/fisiologia , Sequências Repetidas Invertidas , Processamento Pós-Transcricional do RNA , RNA Viral/genética , RNA Viral/metabolismo , Sequências Reguladoras de Ácido Nucleico , Regulação Viral da Expressão Gênica , Humanos , Modelos Biológicos , Conformação de Ácido Nucleico , RNA Viral/química , Fases de Leitura
13.
Bioinformatics ; 30(13): 1805-13, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24578404

RESUMO

MOTIVATION: CRISPR RNAs (crRNAs) are a type of small non-coding RNA that form a key part of an acquired immune system in prokaryotes. Specific prediction methods find crRNA-encoding loci in nearly half of sequenced bacterial, and three quarters of archaeal, species. These Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays consist of repeat elements alternating with specific spacers. Generally one strand is transcribed, producing long pre-crRNAs, which are processed to short crRNAs that base pair with invading nucleic acids to facilitate their destruction. No current software for the discovery of CRISPR loci predicts the direction of crRNA transcription. RESULTS: We have developed an algorithm that accurately predicts the strand of the resulting crRNAs. The method uses as input CRISPR repeat predictions. CRISPRDirection uses parameters that are calculated from the CRISPR repeat predictions and flanking sequences, which are combined by weighted voting. The prediction may use prior coding sequence annotation but this is not required. CRISPRDirection correctly predicted the orientation of 94% of a reference set of arrays. AVAILABILITY AND IMPLEMENTATION: The Perl source code is freely available from http://bioanalysis.otago.ac.nz/CRISPRDirection.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA não Traduzido/genética , Algoritmos , Archaea/genética , Conformação de Ácido Nucleico
14.
BMC Bioinformatics ; 15: 174, 2014 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-24909639

RESUMO

BACKGROUND: Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. RESULTS: Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. CONCLUSIONS: Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.


Assuntos
Regiões 3' não Traduzidas , RNA Mensageiro/genética , Elementos Reguladores de Transcrição , Animais , Humanos , Estabilidade de RNA , Software
15.
BMC Genomics ; 15: 45, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24438054

RESUMO

BACKGROUND: Sea urchins are studied as model organisms for developmental and systems biology and also produce highly valued food products. Evechinus chloroticus (Kina) is a sea urchin species that is indigenous to New Zealand. It is the type member of the Evechinus genus based on its morphological characteristics. Previous research has focused on identifying physical factors affecting commercial roe quality of E. chloroticus, but there is almost no genetic information available for E. chloroticus. E. chloroticus is the only species in its genus and has yet to be subject to molecular phylogenetic analysis. RESULTS: In this study we performed a de novo transcriptome assembly of Illumina sequencing data. A total of 123 million 100 base length paired-end reads were generated using RNA-Seq libraries from a range of E. chloroticus tissues from two individuals obtained from Fiordland, New Zealand. The assembly resulted in a set of 75,002 transcripts with an accepted read coverage and length, of which 24,655 transcripts could be functionally annotated using protein similarity. Transcripts could be further annotated with Gene Ontology, KEGG Orthology and InterPro terms. With this sequence data we could perform the first phylogenetic analysis of E. chloroticus to other species of its family using multiple genes. When sequences for the mitochondrial nitrogen dehydrogenase genes were compared, E. chloroticus remained outside of a family level clade, which indicated E. chloroticus is indeed a genetically distinct genus within its family. CONCLUSIONS: This study has produced a large set of E. chloroticus transcripts/proteins along with functional annotations, vastly increasing the amount of genomic data available for this species. This provides a resource for current and future studies on E. chloroticus, either to increase its commercial value, or its use as a model organism. The phylogenetic results provide a basis for further analysis of relationships between E. chloroticus, its family members, and its evolutionary history.


Assuntos
Genoma , Ouriços-do-Mar/genética , Transcriptoma , Animais , Bases de Dados Genéticas , Biblioteca Gênica , Fases de Leitura Aberta/genética , Filogenia , Ouriços-do-Mar/classificação , Análise de Sequência de RNA
16.
Nucleic Acids Res ; 40(18): 8862-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821558

RESUMO

Messenger ribonucleic acids (RNAs) contain a large number of cis-regulatory RNA elements that function in many types of post-transcriptional regulation. These cis-regulatory elements are often characterized by conserved structures and/or sequences. Although some classes are well known, given the wide range of RNA-interacting proteins in eukaryotes, it is likely that many new classes of cis-regulatory elements are yet to be discovered. An approach to this is to use computational methods that have the advantage of analysing genomic data, particularly comparative data on a large scale. In this study, a set of structural discovery algorithms was applied followed by support vector machine (SVM) classification. We trained a new classification model (CisRNA-SVM) on a set of known structured cis-regulatory elements from 3'-untranslated regions (UTRs) and successfully distinguished these and groups of cis-regulatory elements not been strained on from control genomic and shuffled sequences. The new method outperformed previous methods in classification of cis-regulatory RNA elements. This model was then used to predict new elements from cross-species conserved regions of human 3'-UTRs. Clustering of these elements identified new classes of potential cis-regulatory elements. The model, training and testing sets and novel human predictions are available at: http://mRNA.otago.ac.nz/CisRNA-SVM.


Assuntos
Regiões 3' não Traduzidas , Genômica/métodos , Sequências Reguladoras de Ácido Ribonucleico , Algoritmos , Humanos , Conformação de Ácido Nucleico , Proteínas/genética , RNA/química , Máquina de Vetores de Suporte
17.
Nucleic Acids Res ; 40(12): 5215-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373926

RESUMO

Determining the structural properties of mRNA is key to understanding vital post-transcriptional processes. As experimental data on mRNA structure are scarce, accurate structure prediction is required to characterize RNA regulatory mechanisms. Although various structure prediction approaches are available, it is often unclear which to choose and how to set their parameters. Furthermore, no standard measure to compare predictions of local structure exists. We assessed the performance of different methods using two types of data: transcriptome-wide enzymatic probing information and a large, curated set of cis-regulatory elements. To compare the approaches, we introduced structure accuracy, a measure that is applicable to both global and local methods. Our results showed that local folding was more accurate than the classic global approach. We investigated how the locality parameters, maximum base pair span and window size, influenced the prediction performance. A span of 150 provided a reasonable balance between maximizing the number of accurately predicted base pairs, while minimizing effects of incorrect long-range predictions. We characterized the error at artificial sequence ends, which we reduced by setting the window size sufficiently greater than the maximum span. Our method, LocalFold, diminished all border effects and produced the most robust performance.


Assuntos
RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , Algoritmos , Pareamento de Bases , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Fúngico/química , Software
18.
Eur J Hum Genet ; 32(7): 786-794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467731

RESUMO

Biallelic pathogenic variants in CDC45 are associated with Meier-Gorlin syndrome with craniosynostosis (MGORS type 7), which also includes short stature and absent/hypoplastic patellae. Identified variants act through a hypomorphic loss of function mechanism, to reduce CDC45 activity and impact DNA replication initiation. In addition to missense and premature termination variants, several pathogenic synonymous variants have been identified, most of which cause increased exon skipping of exon 4, which encodes an essential part of the RecJ-orthologue's DHH domain. Here we have identified a second cohort of families segregating CDC45 variants, where patients have craniosynostosis and a reduction in height, alongside common facial dysmorphisms, including thin eyebrows, consistent with MGORS7. Skipping of exon 15 is a consequence of two different variants, including a shared synonymous variant that is enriched in individuals of East Asian ancestry, while other variants in trans are predicted to alter key intramolecular interactions in α/ß domain II, or cause retention of an intron within the 3'UTR. Our cohort and functional data confirm exon skipping is a relatively common pathogenic mechanism in CDC45, and highlights the need for alternative splicing events, such as exon skipping, to be especially considered for variants initially predicted to be less likely to cause the phenotype, particularly synonymous variants.


Assuntos
Proteínas de Ciclo Celular , Éxons , Humanos , Proteínas de Ciclo Celular/genética , Craniossinostoses/genética , Craniossinostoses/patologia , Feminino , Masculino , Processamento Alternativo , Linhagem , Transtornos do Crescimento , Micrognatismo , Patela/anormalidades , Microtia Congênita
19.
RNA Biol ; 10(5): 817-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23492433

RESUMO

The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are essential for target recognition, and for type III, mismatches in the flanking sequences are important in the antiviral response. In this study, we examine the properties of each class of CRISPR. We use this information to provide a tool (CRISPRTarget) that predicts the most likely targets of CRISPR RNAs (http://bioanalysis.otago.ac.nz/CRISPRTarget). This can be used to discover targets in newly sequenced genomic or metagenomic data. To test its utility, we discover features and targets of well-characterized Streptococcus thermophilus and Sulfolobus solfataricus type II and III CRISPR/Cas systems. Finally, in Pectobacterium species, we identify new CRISPR targets and propose a model of temperate phage exposure and subsequent inhibition by the type I CRISPR/Cas systems.


Assuntos
Vírus de Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Bactérias/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , DNA Intergênico/genética , Evolução Molecular , Dados de Sequência Molecular , RNA Bacteriano/genética , Alinhamento de Sequência , Fagos de Streptococcus/genética , Streptococcus thermophilus/genética , Streptococcus thermophilus/virologia , Sulfolobus solfataricus/genética
20.
Nucleic Acids Res ; 37(Database issue): D72-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18984623

RESUMO

Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3'-untranslated regions (3'-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses.


Assuntos
Bases de Dados de Ácidos Nucleicos , Biossíntese de Proteínas , RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , RNA Bacteriano/química , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA