RESUMO
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.
Assuntos
Microbioma Gastrointestinal , Ácidos e Sais Biliares , ClostridialesRESUMO
Chronic inflammation is a common feature of obesity, with elevated cytokines such as interleukin-1 (IL-1) in the circulation and tissues. Here, we report an unconventional IL-1R-MyD88-IRAK2-PHB/OPA1 signaling axis that reprograms mitochondrial metabolism in adipocytes to exacerbate obesity. IL-1 induced recruitment of IRAK2 Myddosome to mitochondria outer membranes via recognition by TOM20, followed by TIMM50-guided translocation of IRAK2 into mitochondria inner membranes, to suppress oxidative phosphorylation and fatty acid oxidation, thereby attenuating energy expenditure. Adipocyte-specific MyD88 or IRAK2 deficiency reduced high-fat-diet-induced weight gain, increased energy expenditure and ameliorated insulin resistance, associated with a smaller adipocyte size and increased cristae formation. IRAK2 kinase inactivation also reduced high-fat diet-induced metabolic diseases. Mechanistically, IRAK2 suppressed respiratory super-complex formation via interaction with PHB1 and OPA1 upon stimulation of IL-1. Taken together, our results suggest that the IRAK2 Myddosome functions as a critical link between inflammation and metabolism, representing a novel therapeutic target for patients with obesity.
Assuntos
Adipócitos/imunologia , Inflamação/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1/metabolismo , Membranas Mitocondriais/metabolismo , Obesidade/imunologia , Adipócitos/patologia , Animais , Células Cultivadas , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosforilação Oxidativa , Proibitinas , Transporte Proteico , Receptores de Interleucina-1/metabolismo , Transdução de SinaisRESUMO
Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.
Assuntos
Plaquetas/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Trombose/metabolismo , Animais , Cálcio/metabolismo , Lesões das Artérias Carótidas/patologia , Ceco/microbiologia , Cloretos , Colina/metabolismo , Dieta , Feminino , Compostos Férricos , Vida Livre de Germes , Humanos , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Trombose/patologiaRESUMO
The molecular mechanisms by which dietary fruits and vegetables confer cardiometabolic benefits remain poorly understood. Historically, these beneficial properties have been attributed to the antioxidant activity of flavonoids. Here, we reveal that the host metabolic benefits associated with flavonoid consumption hinge, in part, on gut microbial metabolism. Specifically, we show that a single gut microbial flavonoid catabolite, 4-hydroxyphenylacetic acid (4-HPAA), is sufficient to reduce diet-induced cardiometabolic disease (CMD) burden in mice. The addition of flavonoids to a high fat diet heightened the levels of 4-HPAA within the portal plasma and attenuated obesity, and continuous delivery of 4-HPAA was sufficient to reverse hepatic steatosis. The antisteatotic effect was shown to be associated with the activation of AMP-activated protein kinase α (AMPKα). In a large survey of healthy human gut metagenomes, just over one percent contained homologs of all four characterized bacterial genes required to catabolize flavonols into 4-HPAA. Our results demonstrate the gut microbial contribution to the metabolic benefits associated with flavonoid consumption and underscore the rarity of this process in human gut microbial communities.
Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Polifenóis/farmacologia , Microbioma Gastrointestinal/fisiologia , Fígado Gorduroso/prevenção & controle , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologiaRESUMO
Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases. Diet is one of the most powerful determinants of gut microbiome community structure, and dietary habits are associated with brain health and disease. Recently, the metaorganismal (i.e., diet-microbe-host) trimethylamine N-oxide (TMAO) pathway has been linked to the development of several brain diseases including Alzheimer's, Parkinson's, and ischemic stroke. However, it is poorly understood how metaorganismal TMAO production influences brain function under normal physiological conditions. To address this, here we have reduced TMAO levels by inhibiting gut microbe-driven choline conversion to trimethylamine (TMA), and then performed comprehensive behavioral phenotyping in mice. Unexpectedly, we find that TMAO is particularly enriched in the murine olfactory bulb, and when TMAO production is blunted at the level of bacterial choline TMA lyase (CutC/D), olfactory perception is altered. Taken together, our studies demonstrate a previously underappreciated role for the TMAO pathway in olfactory-related behaviors.
Assuntos
Percepção Olfatória , Animais , Camundongos , Bactérias/metabolismo , Colina/metabolismo , Metilaminas/metabolismo , Feminino , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention. METHODS: TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr-/-) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3-/-). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA. RESULTS: Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3-/- mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK. CONCLUSIONS: These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.
Assuntos
Aneurisma da Aorta Abdominal , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Suínos , Camundongos Endogâmicos C57BL , Colina , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/prevenção & controleRESUMO
BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.
Assuntos
Antígenos CD55 , Núcleo Celular , Cromatina , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Histonas , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Antígenos CD55/metabolismo , Antígenos CD55/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Transporte ProteicoRESUMO
We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. We generated Mboat7 floxed mice and created hepatocyte- and adipocyte-specific Mboat7 knockout mice using Cre-recombinase mice under the control of the albumin and adiponectin promoter, respectively. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance. The expression of Mboat7 in white adipose tissue closely correlates with diet-induced obesity across a panel of â¼100 inbred strains of mice fed a high fat/high sucrose diet. Moreover, we found that adipocyte-specific genetic deletion of Mboat7 is sufficient to promote hyperinsulinemia, systemic insulin resistance, and mild fatty liver. Unlike in the liver, where Mboat7 plays a relatively minor role in maintaining arachidonic acid-containing PI pools, Mboat7 is the major source of arachidonic acid-containing PI pools in adipose tissue. Our data demonstrate that MBOAT7 is a critical regulator of adipose tissue PI homeostasis, and adipocyte MBOAT7-driven PI biosynthesis is closely linked to hyperinsulinemia and insulin resistance in mice.
Assuntos
Hiperinsulinismo , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Acilação , Adipócitos/metabolismo , Ácido Araquidônico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Homeostase , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing. Phosphorylation of EPRS at Ser999 by mTORC1-S6K1 induces its release from the aminoacyl tRNA multisynthetase complex, which is required for execution of noncanonical functions of EPRS beyond protein synthesis. To investigate the physiological function of EPRS phosphorylation, we generated Eprs knock-in mice bearing phospho-deficient Ser999-to-Ala (S999A) and phospho-mimetic (S999D) mutations. Homozygous S999A mice exhibited low body weight, reduced adipose tissue mass, and increased lifespan, similar to S6K1-deficient mice and mice with adipocyte-specific deficiency of raptor, an mTORC1 constituent. Substitution of the EprsS999D allele in S6K1-deficient mice normalized body mass and adiposity, indicating that EPRS phosphorylation mediates S6K1-dependent metabolic responses. In adipocytes, insulin stimulated S6K1-dependent EPRS phosphorylation and release from the multisynthetase complex. Interaction screening revealed that phospho-EPRS binds SLC27A1 (that is, fatty acid transport protein 1, FATP1), inducing its translocation to the plasma membrane and long-chain fatty acid uptake. Thus, EPRS and FATP1 are terminal mTORC1-S6K1 axis effectors that are critical for metabolic phenotypes.
Assuntos
Adiposidade , Aminoacil-tRNA Sintetases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adipócitos/metabolismo , Envelhecimento/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Animais , Peso Corporal , Membrana Celular/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Insulina/metabolismo , Longevidade/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Mutação , Tamanho do Órgão , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Transporte Proteico , Proteína Regulatória Associada a mTOR , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiênciaRESUMO
Hepsin is a transmembrane serine protease primarily expressed in the liver. To date, the physiological function of hepsin remains poorly defined. Here we report that hepsin-deficient mice have low levels of blood glucose and lipids and liver glycogen, but increased adipose tissue browning and basal metabolic rates. The phenotype is caused by reduced hepatocyte growth factor activation and impaired Met signaling, resulting in decreased liver glucose and lipid metabolism and enhanced adipocyte browning. Hepsin-deficient mice exhibit marked resistance to high-fat diet-induced obesity, hyperglycemia, and hyperlipidemia. In db/db mice, hepsin deficiency ameliorates obesity and diabetes. These data indicate that hepsin is a key regulator in liver metabolism and energy homeostasis, suggesting that hepsin could be a therapeutic target for treating obesity and diabetes.
Assuntos
Adipócitos/metabolismo , Fígado/metabolismo , Obesidade/enzimologia , Serina Endopeptidases/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular , Glucose/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Serina Endopeptidases/genéticaRESUMO
Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models. An important advance has been made within the past several years, as several genome-wide association studies have discovered that an SNP near the gene encoding membrane-bound O-acyltransferase 7 (MBOAT7) is associated with severe liver diseases. This common MBOAT7 variant (rs641738, C>T), which reduces MBOAT7 expression, confers increased susceptibility to nonalcoholic fatty liver disease, alcohol-associated liver disease, and liver fibrosis in patients chronically infected with viral hepatitis. Recent studies in mice also show that Mboat7 loss of function can promote hepatic steatosis, inflammation, and fibrosis, causally linking this phosphatidylinositol remodeling enzyme to liver health in both rodents and humans. Herein, we review recent insights into the mechanisms by which MBOAT7-driven phosphatidylinositol remodeling influences liver disease progression and discuss how rapid progress in this area could inform drug discovery moving forward.
Assuntos
Hepatite Viral Humana , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Aciltransferases/genética , Animais , Progressão da Doença , Fibrose , Estudo de Associação Genômica Ampla , Hepatite Viral Humana/complicações , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , FosfatidilinositóisRESUMO
There is growing appreciation of the importance of the intestinal microbiota in Parkinson's disease (PD), and one potential mechanism by which the intestinal microbiota can communicate with the brain is via bacteria-derived metabolites. In this study, plasma levels of bacterial-derived metabolites including trimethylamine-N-oxide (TMAO), short chain fatty acids (SCFA), the branched chain fatty acid isovalerate, succinate, and lactate were evaluated in PD subjects (treatment naïve and treated) which were compared to (1) population controls, (2) spousal / household controls (similar lifestyle to PD subjects), and (3) subjects with multiple system atrophy (MSA). Analyses revealed an increase in the TMAO pathway in PD subjects which was independent of medication status, disease characteristics, and lifestyle. Lactic acid was decreased in treated PD subjects, succinic acid positively correlated with disease severity, and the ratio of pro-inflammatory TMAO to the putative anti-inflammatory metabolite butyric acid was significantly higher in PD subjects compared to controls indicating a pro-inflammatory shift in the metabolite profile in PD subjects. Finally, acetic and butyric acid were different between PD and MSA subjects indicating that metabolites may differentiate these synucleinopathies. In summary, (1) TMAO is elevated in PD subjects, a phenomenon independent of disease characteristics, treatment status, and lifestyle and (2) metabolites may differentiate PD and MSA subjects. Additional studies to understand the potential of TMAO and other bacterial metabolites to serve as a biomarker or therapeutic targets are warranted.
Assuntos
Microbioma Gastrointestinal , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Bactérias , Butiratos , Humanos , Estilo de Vida , Doença de Parkinson/terapiaRESUMO
Posttraumatic stress disorder (PTSD) is a psychiatric disorder, resulting from exposure to traumatic events. Current recommended first-line interventions for the treatment of PTSD include evidence-based psychotherapies, such as cognitive processing therapy (CPT). Psychotherapies are effective for reducing PTSD symptoms, but approximately two-thirds of veterans continue to meet diagnostic criteria for PTSD after treatment, suggesting there is an incomplete understanding of what factors sustain PTSD. The intestine can influence the brain and this study evaluated intestinal readouts in subjects with PTSD. Serum samples from controls without PTSD (n = 40) from the Duke INTRuST Program were compared with serum samples from veterans with PTSD (n = 40) recruited from the Road Home Program at Rush University Medical Center. Assessments included microbial metabolites, intestinal barrier, and intestinal epithelial cell function. In addition, intestinal readouts were assessed in subjects with PTSD before and after a 3-wk CPT-based intensive treatment program (ITP) to understand if treatment impacts the intestine. Compared with controls, veterans with PTSD had a proinflammatory intestinal environment including lower levels of microbiota-derived metabolites, such as acetic, lactic, and succinic acid, intestinal barrier dysfunction [lipopolysaccharide (LPS) and LPS-binding protein], an increase in HMGB1, and a concurrent increase in the number of intestinal epithelial cell-derived extracellular vesicles. The ITP improved PTSD symptoms but no changes in intestinal outcomes were noted. This study confirms the intestine is abnormal in subjects with PTSD and suggests that effective treatment of PTSD does not alter intestinal readouts. Targeting beneficial changes in the intestine may be an approach to enhance existing PTSD treatments.NEW & NOTEWORTHY This study confirms an abnormal intestinal environment is present in subjects with PTSD. This study adds to what is already known by examining the intestinal barrier and evaluating the relationship between intestinal readouts and PTSD symptoms and is the first to report the impact of PTSD treatment (which improves symptoms) on intestinal readouts. This study suggests that targeting the intestine as an adjunct approach could improve the treatment of PTSD.
Assuntos
Terapia Cognitivo-Comportamental , Transtornos de Estresse Pós-Traumáticos , Veteranos , Terapia Cognitivo-Comportamental/métodos , Humanos , Intestinos , Transtornos de Estresse Pós-Traumáticos/terapia , Resultado do Tratamento , Veteranos/psicologiaRESUMO
Cardiometabolic disease (CMD) is a leading cause of death worldwide and encompasses the inflammatory metabolic disorders of obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, and cardiovascular disease. Flavonoids are polyphenolic plant metabolites that are abundantly present in fruits and vegetables and have biologically relevant protective effects in a number of cardiometabolic disorders. Several epidemiological studies underscored a negative association between dietary flavonoid consumption and the propensity to develop CMD. Recent studies elucidated the contribution of the gut microbiota in metabolizing dietary intake as it relates to CMD. Importantly, the biological efficacy of flavonoids in humans and animal models alike is linked to the gut microbial community. Herein, we discuss the opportunities and challenges of leveraging flavonoid intake as a potential strategy to prevent and treat CMD in a gut microbe-dependent manner, with special emphasis on flavonoid-derived microbial metabolites.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Doenças Metabólicas , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , HumanosRESUMO
High-density lipoprotein (HDL) metabolism is facilitated in part by scavenger receptor class B, type 1 (SR-B1) that mediates HDL uptake into cells. Higher levels of HDL have been associated with protection in other diseases, however, its role in prostate cancer is not definitive. SR-B1 is up-regulated in prostate cancer tissue, suggesting a possible role of this receptor in tumor progression. Here, we report that knockout (KO) of SR-B1 in both human and mouse prostate cancer cell lines through CRISPR/Cas9-mediated genome editing reduces HDL uptake into the prostate cancer cells and reduces their proliferation in response to HDL. In vivo studies using syngeneic SR-B1 WT (SR-B1+/+) and SR-B1 KO (SR-B1-/-) prostate cancer cells in WT and apolipoprotein-AI KO (apoA1-KO) C57BL/6J mice revealed that WT hosts, containing higher levels of total and HDL-cholesterol, grew larger tumors than apoA1-KO hosts with lower levels of total and HDL-cholesterol. Furthermore, SR-B1-/- prostate cancer cells formed smaller tumors in WT hosts than SR-B1+/+ cells in the same host model. Increased tumor volume was overall associated with reduced survival. We conclude that knocking out SR-B1 in prostate cancer tumors reduces HDL-associated increases in prostate cancer cell proliferation and disease progression.
Assuntos
Progressão da Doença , Lipoproteínas HDL/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Depuradores Classe B/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética , Regulação para Cima/genéticaRESUMO
BACKGROUND: Metabolic surgery has beneficial metabolic effects, including remission of type 2 diabetes. We hypothesized that duodenojejunal bypass (DJB) surgery can protect against development of type 1 diabetes (T1D) by enhancing regulation of cellular and molecular pathways that control glucose homeostasis. METHODS: BBDP/Wor rats, which are prone to develop spontaneous autoimmune T1D, underwent loop DJB (n = 15) or sham (n = 15) surgery at a median age of 41 days, before development of diabetes. At T1D diagnosis, a subcutaneous insulin pellet was implanted, oral glucose tolerance test was performed 21 days later, and tissues were collected 25 days after onset of T1D. Pancreas and liver tissues were assessed by histology and RT-qPCR. Fecal microbiota composition was analyzed by 16S V4 sequencing. RESULTS: Postoperatively, DJB rats weighed less than sham rats (287.8 vs 329.9 g, P = 0.04). In both groups, 14 of 15 rats developed T1D, at similar age of onset (87 days in DJB vs 81 days in sham, P = 0.17). There was no difference in oral glucose tolerance, fasting and stimulated plasma insulin and c-peptide levels, and immunohistochemical analysis of insulin-positive cells in the pancreas. DJB rats needed 1.3 ± 0.4 insulin implants vs 1.9 ± 0.5 in sham rats (P = 0.002). Fasting and glucose stimulated glucagon-like peptide 1 (GLP-1) secretion was elevated after DJB surgery. DJB rats had reduced markers of metabolic stress in liver. After DJB, the fecal microbiome changed significantly, including increases in Akkermansia and Ruminococcus, while the changes were minimal in sham rats. CONCLUSION: DJB does not protect against autoimmune T1D in BBDP/Wor rats, but reduces the need for exogenous insulin and facilitates other metabolic benefits including weight loss, increased GLP-1 secretion, reduced hepatic stress, and altered gut microbiome.
Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Derivação Gástrica , Resistência à Insulina , Animais , Glicemia , Duodeno/cirurgia , Jejuno/cirurgia , RatosRESUMO
Bile acids (BAs) serve multiple biological functions, ranging from the absorption of lipids and fat-soluble vitamins to serving as signaling molecules through the direct activation of dedicated cellular receptors. Synthesized by both host and microbial pathways, BAs are increasingly understood as participating in the regulation of numerous pathways relevant to metabolic diseases, including lipid and glucose metabolism, energy expenditure, and inflammation. Quantitative analyses of BAs in biological matrices can be problematic due to their unusual and diverse physicochemical properties, making optimization of a method that shows good accuracy, precision, efficiency of extraction, and minimized matrix effects across structurally distinct human and murine BAs challenging. Herein we develop and clinically validate a stable-isotope-dilution LC/MS/MS method for the quantitative analysis of numerous primary and secondary BAs in both human and mouse biological matrices. We also utilize this tool to investigate gut microbiota participation in the generation of structurally specific BAs in both humans and mice. We examine circulating levels of specific BAs and in a clinical case-control study of age- and gender-matched type 2 diabetes mellitus (T2DM) versus nondiabetics. BAs whose circulating levels are associated with T2DM include numerous 12α-hydroxyl BAs (taurocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, deoxycholic acid, and 3-ketodeoxycholic acid), while taurohyodeoxycholic acid was negatively associated with diabetes. The LC/MS/MS-based platform described should serve as a robust, high-throughput investigative tool for studying the potential involvement of structurally specific BAs and the gut microbiome on both physiological and disease processes.
Assuntos
Ácidos e Sais Biliares/análise , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal , Animais , Ácidos e Sais Biliares/química , Estudos de Casos e Controles , Cromatografia Líquida , Diabetes Mellitus Tipo 2/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Controle de Qualidade , Espectrometria de Massas em TandemRESUMO
The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has recently been linked to cardiovascular disease (CVD) pathogenesis, prompting the development of therapeutic strategies to reduce TMAO. Previous work has shown that experimental alteration of circulating TMAO levels via dietary alterations or inhibition of the host TMAO producing enzyme flavin containing monooxygenase 3 (FMO3) is associated with reorganization of host cholesterol and bile acid metabolism in mice. In this work, we set out to understand whether recently developed nonlethal gut microbe-targeting small molecule choline trimethylamine (TMA) lyase inhibitors also alter host cholesterol and bile acid metabolism. Treatment of mice with the mechanism-based choline TMA lyase inhibitor, iodomethylcholine (IMC), increased fecal neutral sterol loss in the form of coprostanol, a bacteria metabolite of cholesterol. In parallel, IMC treatment resulted in marked reductions in the intestinal sterol transporter Niemann-pick C1-like 1 (NPC1L1) and reorganization of the gut microbial community, primarily reversing choline supplemented diet-induced changes. IMC also prevented diet-driven hepatic cholesterol accumulation, causing both upregulation of the host hepatic bile acid synthetic enzyme CYP7A1 and altering the expression of hepatic genes critical for bile acid feedback regulation. These studies suggest that the gut microbiota-driven TMAO pathway is closely linked to both microbe and host sterol and bile acid metabolism. Collectively, as gut microbe-targeting choline TMA lyase inhibitors move through the drug discovery pipeline from preclinical models to human studies, it will be important to understand how these drugs impact both microbe and host cholesterol and bile acid metabolism.NEW & NOTEWORTHY The gut microbe-dependent metabolite trimethylamine-N-oxide (TMAO) has been strongly associated with cardiovascular mortality, prompting drug discovery efforts to identify points of therapeutic intervention within the microbe host TMAO pathway. Recently, mechanism-based small molecule inhibitors of the major bacterial trimethylamine (TMA) lyase enzymes have been developed, and these drugs show efficacy as anti-atherothrombotic agents. The novel findings of this study are that small molecule TMA lyase inhibition results in beneficial reorganization of host cholesterol and bile acid metabolism. This study confirms previous observations that the gut microbial TMAO pathway is intimately linked to host cholesterol and bile acid metabolism and provides further rationale for the development of small molecule choline TMA lyase inhibitors for the treatment of cardiometabolic disorders.
Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Animais , Colina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , CamundongosRESUMO
Alterations in gut microbiota are known to affect intestinal inflammation and obesity. Antibiotic treatment can affect weight gain by elimination of histone deacetylase (HDAC) inhibitor-producing microbes, which are anti-inflammatory by augmenting regulatory T (Treg) cells. We asked whether mice that lack HDAC6 and have potent suppressive Treg cells are protected from microbiota-induced accelerated weight gain. We crossed wild-type and HDAC6-deficient mice and subjected the offspring to perinatal penicillin, inducing weight gain via microbiota disturbance. We observed that male HDAC6-deficient mice were not protected and developed profoundly accelerated weight gain. The antibiotic-exposed HDAC6-deficient mice showed a mixed immune phenotype with increased CD4+ and CD8+ T-cell activation yet maintained the enhanced Treg cell-suppressive function phenotype characteristic of HDAC6-deficient mice. 16S rRNA sequencing of mouse fecal samples reveals that their microbiota diverged with time, with HDAC6 deletion altering microbiome composition. On a high-fat diet, HDAC6-deficient mice were depleted in representatives of the S24-7 family and Lactobacillus but enriched with Bacteroides and Parabacteroides; these changes are associated with obesity. Our findings further our understanding of the influence of HDACs on microbiome composition and are important for the development of HDAC6 inhibitors in the treatment of human diseases.-Lieber, A. D., Beier, U. H., Xiao, H., Wilkins, B. J., Jiao, J., Li, X. S., Schugar, R. C., Strauch, C. M., Wang, Z., Brown, J. M., Hazen, S. L., Bokulich, N. A., Ruggles, K. V., Akimova, T., Hancock, W. W., Blaser, M. J. Loss of HDAC6 alters gut microbiota and worsens obesity.
Assuntos
Microbioma Gastrointestinal , Desacetilase 6 de Histona/fisiologia , Obesidade/genética , Obesidade/microbiologia , Animais , Bacteroides/isolamento & purificação , Dieta Hiperlipídica , Fígado Gorduroso/genética , Fezes , Vida Livre de Germes , Desacetilase 6 de Histona/genética , Hiperlipidemias/genética , Lactobacillus/isolamento & purificação , Masculino , Mesentério/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/imunologia , Baço/patologia , Linfócitos T Reguladores/imunologia , Regulação para Cima , Aumento de PesoRESUMO
Objective- FMO (flavin-containing monooxygenase) 3 converts bacterial-derived trimethylamine to trimethylamine N-oxide (TMAO), an independent risk factor for cardiovascular disease. We generated FMO3 knockout (FMO3KO) mouse to study its effects on plasma TMAO, lipids, glucose/insulin metabolism, thrombosis, and atherosclerosis. Approach and Results- Previous studies with an antisense oligonucleotide (ASO) knockdown strategy targeting FMO3 in LDLRKO (low-density lipoprotein receptor knockout) mice resulted in major reductions in TMAO levels and atherosclerosis, but also showed effects on plasma lipids, insulin, and glucose. Although FMO3KO mice generated via CRISPR/Cas9 technology bred onto the LDLRKO background did exhibit similar effects on TMAO levels, the effects on lipid metabolism were not as pronounced as with the ASO knockdown model. These differences could result from either off-target effects of the ASO or from a developmental adaptation to the FMO3 deficiency. To distinguish these possibilities, we treated wild-type and FMO3KO mice with control or FMO3 ASOs. FMO3-ASO treatment led to the same extent of lipid-lowering effects in the FMO3KO mice as the wild-type mice, indicating off-target effects. The levels of TMAO in LDLRKO mice fed an atherogenic diet are very low in both wild-type and FMO3KO mice, and no significant effect was observed on atherosclerosis. When FMO3KO and wild-type mice were maintained on a 0.5% choline diet, FMO3KO showed a marked reduction in both TMAO and in vivo thrombosis potential. Conclusions- FMO3KO markedly reduces systemic TMAO levels and thrombosis potential. However, the previously observed large effects of an FMO3 ASO on plasma lipid levels appear to be due partly to off-target effects.