Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Glycobiology ; 33(8): 626-636, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37364046

RESUMO

The ST6GAL1 sialyltransferase, which adds α2-6-linked sialic acids to N-glycosylated proteins, is upregulated in many malignancies including ovarian cancer. Through its activity in sialylating select surface receptors, ST6GAL1 modulates intracellular signaling to regulate tumor cell phenotype. ST6GAL1 has previously been shown to act as a survival factor that protects cancer cells from cytotoxic stressors such as hypoxia. In the present study, we investigated a role for ST6GAL1 in tumor cell metabolism. ST6GAL1 was overexpressed (OE) in OV4 ovarian cancer cells, which have low endogenous ST6GAL1, or knocked-down (KD) in ID8 ovarian cancer cells, which have high endogenous ST6GAL1. OV4 and ID8 cells with modulated ST6GAL1 expression were grown under normoxic or hypoxic conditions, and metabolism was assessed using Seahorse technology. Results showed that cells with high ST6GAL1 expression maintained a higher rate of oxidative metabolism than control cells following treatment with the hypoxia mimetic, desferrioxamine (DFO). This enrichment was not due to an increase in mitochondrial number. Glycolytic metabolism was also increased in OV4 and ID8 cells with high ST6GAL1 expression, and these cells displayed greater activity of the glycolytic enzymes, hexokinase and phosphofructokinase. Metabolism maps were generated from the combined Seahorse data, which suggested that ST6GAL1 functions to enhance the overall metabolism of tumor cells. Finally, we determined that OV4 and ID8 cells with high ST6GAL1 expression were more invasive under conditions of hypoxia. Collectively, these results highlight the importance of sialylation in regulating the metabolic phenotype of ovarian cancer cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transdução de Sinais , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Hipóxia , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismo
2.
Am J Physiol Endocrinol Metab ; 321(4): E521-E529, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370595

RESUMO

The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.


Assuntos
DNA Mitocondrial/metabolismo , Glucose/metabolismo , Resistência à Insulina , Insulina/metabolismo , Mitocôndrias/metabolismo , Animais , DNA Mitocondrial/genética , Feminino , Masculino , Análise da Randomização Mendeliana , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
3.
Cardiovasc Diabetol ; 15: 53, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036979

RESUMO

OBJECTIVE: Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. APPROACH AND RESULTS: We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (ß = 0.14 ± 0.13, P = 0.04 and ß = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. CONCLUSIONS: We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.


Assuntos
Aterosclerose/genética , DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Leucócitos Mononucleares/metabolismo , Adulto , Idoso , Aterosclerose/complicações , Aterosclerose/metabolismo , Velocidade do Fluxo Sanguíneo/genética , Artéria Braquial/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Hiperemia/genética , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/genética , Fatores de Risco
4.
Hypertension ; 79(4): 775-784, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164526

RESUMO

BACKGROUND: We previously reported increased plasma XO (xanthine oxidase) activity in patients with resistant hypertension. Increased XO can cause mitochondrial DNA damage and promote release of fragments called mitochondrial DNA damage-associated molecular patterns (mtDNA DAMPs). Here, we report racial differences in XO activity and mtDNA DAMPs in Black and White adults with resistant hypertension. METHODS: This retrospective study includes 91 resistant hypertension patients (44% Black, 47% female) with blood pressure >140/90 mm Hg on ≥4 medications and 37 normotensive controls (30% Black, 54% female) with plasma XO activity, mtDNA DAMPs, and magnetic resonance imaging of left ventricular morphology and function. RESULTS: Black-resistant hypertension patients were younger (mean age 52±10 versus 59±10 years; P=0.001), with higher XO activity and left ventricular wall thickness, and worse diastolic dysfunction than White resistant hypertension patients. Urinary sodium excretion (mg/24 hour per kg) was positively related to left ventricular end-diastolic volume (r=0.527, P=0.001) and left ventricular mass (r=0.394, P=0.02) among Black but not White resistant hypertension patients. Patients with resistant hypertension had increased mtDNA DAMPs versus controls (P<0.001), with Black mtDNA DAMPS greater than Whites (P<0.001). Transmission electron microscopy of skeletal muscle biopsies in resistant hypertension patients demonstrates mitochondria cristae lysis, myofibrillar loss, large lipid droplets, and glycogen accumulation. CONCLUSIONS: These data warrant a large study to examine the role of XO and mitochondrial mtDNA DAMPs in cardiac remodeling and heart failure in Black adults with resistant hypertension.


Assuntos
Hipertensão , Xantina Oxidase , Adulto , DNA Mitocondrial/genética , Feminino , Humanos , Hipertensão/genética , Masculino , Pessoa de Meia-Idade , Mitocôndrias , Fatores Raciais , Estudos Retrospectivos
5.
Redox Biol ; 36: 101568, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512469

RESUMO

The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.


Assuntos
DNA Mitocondrial , Mitocôndrias , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Eucarióticas , Mitocôndrias/genética
6.
JCI Insight ; 2(4): e89303, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239650

RESUMO

Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.


Assuntos
Apêndice Atrial/metabolismo , Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , DNA Mitocondrial/metabolismo , Mitofagia , Traumatismo por Reperfusão Miocárdica/metabolismo , Biogênese de Organelas , RNA Mensageiro/metabolismo , Idoso , Proteínas de Ciclo Celular , Ponte de Artéria Coronária , DNA/metabolismo , Dano ao DNA , Feminino , GTP Fosfo-Hidrolases/metabolismo , Implante de Prótese de Valva Cardíaca , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Polirribossomos , Fator de Transcrição TFIIIA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA