Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Dyn ; 247(3): 542-554, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28631378

RESUMO

BACKGROUND: Although normally linked to bone and cartilage development, the Runt-related transcription factor, RUNX2, was reported in the mouse heart during development of the valves. We examined RUNX2 expression and function in the developing avian heart as it related to the epithelial-mesenchymal transition (EMT) in the atrioventricular canal. EMT can be separated into an activation stage involving hypertrophy and cell separation and an invasion stage where cells invade the extracellular matrix. The localization and activity of RUNX2 was explored in relation to these steps in the heart. As RUNX2 was also reported in cancer tissues, we examined its expression in the progression of esophageal cancer in staged tissues. RESULTS: A specific isoform, RUNX2-I, is present and required for EMT by endothelia of the atrioventricular canal. Knockdown of RUNX2-I inhibits the cell-cell separation that is characteristic of initial activation of EMT. Loss of RUNX2-I altered expression of EMT markers to a greater extent during activation than during subsequent cell invasion. Transforming growth factor beta 2 (TGFß2) mediates activation during cardiac endothelial EMT. Consistent with a role in activation, RUNX2-I is regulated by TGFß2 and its activity is independent of similarly expressed Snai2 in regulation of EMT. Examination of RUNX2 expression in esophageal cancer showed its upregulation concomitant with the development of dysplasia and continued expression in adenocarcinoma. CONCLUSIONS: These data introduce the RUNX2-I isoform as a critical early transcription factor mediating EMT in the developing heart after induction by TGFß2. Its expression in tumor tissue suggests a similar role for RUNX2 in the EMT of metastasis. Developmental Dynamics 247:542-554, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Transição Epitelial-Mesenquimal , Animais , Embrião de Galinha , Galinhas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Neoplasias/metabolismo , Isoformas de Proteínas , Ativação Transcricional , Fator de Crescimento Transformador beta
2.
Biomaterials ; 301: 122267, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633022

RESUMO

Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.


Assuntos
Radiação Cósmica , Humanos , Engenharia Biomédica , Radiação Cósmica/efeitos adversos , Hipertrofia
3.
Nat Commun ; 14(1): 1328, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899004

RESUMO

The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is selectively expressed in epithelium tissues and is involved in the control of human epidermal differentiation and wound healing. Despite its initial report as a long non-coding RNA, the TINCR locus codes for a highly conserved ubiquitin-like microprotein associated with keratinocyte differentiation. Here we report the identification of TINCR as a tumor suppressor in squamous cell carcinoma (SCC). TINCR is upregulated by UV-induced DNA damage in a TP53-dependent manner in human keratinocytes. Decreased TINCR protein expression is prevalently found in skin and head and neck squamous cell tumors and TINCR expression suppresses the growth of SCC cells in vitro and in vivo. Consistently, Tincr knockout mice show accelerated tumor development following UVB skin carcinogenesis and increased penetrance of invasive SCCs. Finally, genetic analyses identify loss-of-function mutations and deletions encompassing the TINCR gene in SCC clinical samples supporting a tumor suppressor role in human cancer. Altogether, these results demonstrate a role for TINCR as protein coding tumor suppressor gene recurrently lost in squamous cell carcinomas.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Animais , Camundongos , Humanos , Ubiquitina/metabolismo , Carcinoma de Células Escamosas/genética , Genes Supressores de Tumor , Queratinócitos/metabolismo , Neoplasias de Cabeça e Pescoço/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Micropeptídeos
4.
Exp Hematol ; 111: 25-31, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35487293

RESUMO

Post-transcriptional RNA modifications determine RNA fate by influencing numerous processes such as translation, decay and localization. One of the most abundant RNA modifications is N6-methyladenoside (m6A), which has been shown to be important in healthy as well as malignant hematopoiesis. Several proteins representing key players in m6A RNA biology, such as m6A writers, erasers and readers, were recently reported to be essential for hematopoietic stem cell (HSC) function. In leukemia, expression of m6A regulators has been shown to be increased, opening up potential opportunities for therapeutic exploitation by targeting them in blood malignancies. These recent discoveries were the focus of the Fall 2021 International Society for Experimental Hematology New Investigators webinar. We review here the latest findings in the field of mRNA modifications in normal and malignant hematopoiesis and how this might open up novel therapeutic options.


Assuntos
Hematopoese , Leucemia , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA
5.
Nat Aging ; 2(11): 1008-1023, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-37118089

RESUMO

Aging is characterized by an accumulation of myeloid-biased hematopoietic stem cells (HSCs) with reduced developmental potential. Genotoxic stress and epigenetic alterations have been proposed to mediate age-related HSC loss of regenerative and self-renewal potential. However, the mechanisms underlying these changes remain largely unknown. Genetic inactivation of the plant homeodomain 6 (Phf6) gene, a nucleolar and chromatin-associated factor, antagonizes age-associated HSC decline. Immunophenotyping, single-cell transcriptomic analyses and transplantation assays demonstrated markedly decreased accumulation of immunophenotypically defined HSCs, reduced myeloid bias and increased hematopoietic reconstitution capacity with preservation of lymphoid differentiation potential in Phf6-knockout HSCs from old mice. Moreover, deletion of Phf6 in aged mice rejuvenated immunophenotypic, transcriptional and functional hallmarks of aged HSCs. Long-term HSCs from old Phf6-knockout mice showed epigenetic rewiring and transcriptional programs consistent with decreased genotoxic stress-induced HSC aging. These results identify Phf6 as an important epigenetic regulator of HSC aging.


Assuntos
Envelhecimento , Células-Tronco Hematopoéticas , Camundongos , Animais , Camundongos Knockout , Envelhecimento/genética , Diferenciação Celular , Epigênese Genética , Proteínas Repressoras/genética
6.
Cell Rep ; 39(3): 110695, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443168

RESUMO

Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) comprises heterogeneous lymphoid malignancies characterized by pleomorphic lymphocytes and variable inflammatory cell-rich tumor microenvironment. Genetic drivers in PTCL-NOS include genomic alterations affecting the VAV1 oncogene; however, their specific role and mechanisms in PTCL-NOS remain incompletely understood. Here we show that expression of Vav1-Myo1f, a recurrent PTCL-associated VAV1 fusion, induces oncogenic transformation of CD4+ T cells. Notably, mouse Vav1-Myo1f lymphomas show T helper type 2 features analogous to high-risk GATA3+ human PTCL. Single-cell transcriptome analysis reveals that Vav1-Myo1f alters T cell differentiation and leads to accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment, a feature linked with aggressiveness in human PTCL. Importantly, therapeutic targeting of TAMs induces strong anti-lymphoma effects, highlighting the lymphoma cells' dependency on the microenvironment. These results demonstrate an oncogenic role for Vav1-Myo1f in the pathogenesis of PTCL, involving deregulation in T cell polarization, and identify the lymphoma-associated macrophage-tumor microenvironment as a therapeutic target in PTCL.


Assuntos
Linfoma de Células T Periférico , Animais , Fusão Gênica , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Macrófagos/metabolismo , Camundongos , Miosina Tipo I/genética , Oncogenes , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Microambiente Tumoral/genética
7.
Nat Cancer ; 1(11): 1113-1127, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33796864

RESUMO

Multi-agent combination chemotherapy can be curative in acute lymphoblastic leukemia (ALL). Still, patients with primary refractory disease or with relapsed leukemia have a very poor prognosis. Here we integrate an in-depth dissection of the mutational landscape across diagnostic and relapsed pediatric and adult ALL samples with genome-wide CRISPR screen analysis of gene-drug interactions across seven ALL chemotherapy drugs. By combining these analyses, we uncover diagnostic and relapse-specific mutational mechanisms as well as genetic drivers of chemoresistance. Functionally, our data identifies common and drug-specific pathways modulating chemotherapy response and underscores the effect of drug combinations in restricting the selection of resistance-driving genetic lesions. In addition, by identifying actionable targets for the reversal of chemotherapy resistance, these analyses open novel therapeutic opportunities for the treatment of relapse and refractory disease.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Criança , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Recidiva
8.
Cancer Cell ; 34(6): 869-871, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537507

RESUMO

Glucocorticoid resistance represents a major challenge in treating acute lymphoblastic leukemia. In this issue of Cancer Cell, Jing and colleagues show epigenetic deregulation of glucocorticoid-induced BIM activation in glucocorticoid-resistant leukemia cells, and restore glucocorticoid-receptor-induced BIM upregulation with DNA demethylating agents to effectively enhance glucocorticoid response.


Assuntos
Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína 11 Semelhante a Bcl-2 , Cromatina , Dexametasona , Humanos , Linfócitos , Receptores de Glucocorticoides/genética
9.
Mol Cell Oncol ; 5(2): e1413495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487897

RESUMO

Using a functional proliferation reporter we identified quiescent tumor propagating cancer cells (TPCs) in intact squamous cell carcinomas, and found that TGFß signaling controls their reversible entry into a growth arrested state, which protects TPCs from chemotherapy. TPCs with compromised TGFß/Smad signaling can't enter quiescence and subsequently die from chemotherapy.

10.
Cell Stem Cell ; 20(5): 575-577, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475877

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) are refractory to therapeutic interventions. Chen et al. (2017) show that mouse and human HNSCCs and their metastases depend on Bmi1-expressing cancer stem cells and AP1 signaling and that simultaneously inhibiting Bmi1 or AP1, combined with Cisplatin, reduces tumor growth effectively in preclinical models.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Cisplatino/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Antineoplásicos/uso terapêutico , Humanos , Camundongos , Modelos Biológicos , Complexo Repressor Polycomb 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tamoxifeno/uso terapêutico
11.
Cell Stem Cell ; 21(5): 650-664.e8, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100014

RESUMO

Squamous cell carcinomas (SCCs) are heterogeneous tumors sustained by tumor-propagating cancer cells (TPCs). SCCs frequently resist chemotherapy through still unknown mechanisms. Here, we combine H2B-GFP-based pulse-chasing with cell-surface markers to distinguish quiescent from proliferative TPCs within SCCs. We find that quiescent TPCs resist DNA damage and exhibit increased tumorigenic potential in response to chemotherapy, whereas proliferative TPCs undergo apoptosis. Quiescence is regulated by TGF-ß/SMAD signaling, which directly regulates cell-cycle gene transcription to control a reversible G1 cell-cycle arrest, independent of p21CIP function. Indeed, genetic or pharmacological TGF-ß inhibition increases the susceptibility of TPCs to chemotherapy because it prevents entry into a quiescent state. These findings provide direct evidence that TPCs can reversibly enter a quiescent, chemoresistant state and thereby underscore the need for combinatorial approaches to improve treatment of chemotherapy-resistant SCCs.


Assuntos
Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Coloração e Rotulagem
12.
Genes Cancer ; 2(8): 771-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22393462

RESUMO

The basal cell layer has emerged as a critical player in cancer progression, and understanding the molecular contribution of specific cell types is important in treatment and prevention. The adhesion receptor CD44, which mediates epithelial-stromal and cell-cell interactions, has been shown to both promote and suppress tumor progression. To better understand the normal function of CD44, we have investigated its role in mouse mammary gland development and its expression in human breast and prostate cancer. We have found that CD44 is expressed in the myoepithelium of the developing mammary gland and modulates ductal development of FVB/N mice. The loss of CD44 results in defective luminal-myoepithelial cell-cell adhesion and promotes the mixing of luminal and myoepithelial layers, disrupting epithelial bilayer organization, and CD44-null mice experience delayed ductal outgrowth and impaired terminal end bud formation. The myoepithelial expression of CD44 is also relevant to its expression in cancer, as CD44 is expressed in the basal cells of early-stage breast and prostate cancer but exhibits altered localization with increasing tumorigenicity and is strongly expressed by tumor epithelium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA