Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 127(3): 379-390, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32299299

RESUMO

RATIONALE: Mitochondrial Ca2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca2+ uniporter) mediates mitochondrial Ca2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. OBJECTIVE: Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. METHODS AND RESULTS: Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted (Mcub-/-) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub-/- mice were more sensitive to Ca2+ overload. CONCLUSIONS: Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.


Assuntos
Cálcio/metabolismo , Membro Posterior/irrigação sanguínea , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Animais , Sinalização do Cálcio , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Precondicionamento Isquêmico , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia
2.
Circ Res ; 124(4): 526-538, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590978

RESUMO

RATIONALE: Congenital heart disease can lead to life-threatening right ventricular (RV) heart failure. Results from clinical trials support expanding cardiac progenitor cell (CPC) based therapies. However, our recent data show that CPCs lose function as they age, starting as early as 1 year. OBJECTIVE: To determine whether the aggregation of child (1-5-year-old) CPCs into scaffold-free spheres can improve differentiation by enhancing Notch signaling, a known regulator of CPC fate. We hypothesized that aggregated (3-dimensional [3D]) CPCs will repair RV heart failure better than monolayer (2-dimensional [2D]) CPCs. METHODS AND RESULTS: Spheres were produced with 1500 CPCs each using a microwell array. CPC aggregation significantly increased gene expression of Notch1 compared with 2D CPCs, accompanied by significant upregulation of cardiogenic transcription factors (GATA4, HAND1, MEF2C, NKX2.5, and TBX5) and endothelial markers (CD31, FLK1, FLT1, VWF). Blocking Notch receptor activation with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) diminished these effects. To evaluate the therapeutic improvements of CPC aggregation, RV heart failure was induced in athymic rats by pulmonary artery banding, and cells were implanted into the RV free wall. Echocardiographic measurements 28 days postimplantation showed significantly improved RV function with 3D compared with 2D CPCs. Tracking implanted CPCs via DiR (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide)-labeling showed improved retention of 3D CPCs. Transducing 3D CPCs with Notch1-shRNA (short hairpin RNA) did not reduce retention, but significantly reduced RV functional improvements. Histological analyses showed 3D treatment reduced RV fibrosis and increased angiogenesis. Although 3D CPCs formed CD31+ vessel-like cells in vivo, these effects are more likely because of improved 3D CPC exosome function compared with 2D CPC exosomes. CONCLUSIONS: Spherical aggregation improves child CPC function in a Notch-dependent manner. The strong reparative ability of CPC spheres warrants further investigation as a treatment for pediatric heart failure, especially in older children where reparative ability may be reduced.


Assuntos
Agregação Celular , Cardiopatias Congênitas/patologia , Insuficiência Cardíaca/terapia , Receptores Notch/metabolismo , Esferoides Celulares/metabolismo , Transplante de Células-Tronco/métodos , Disfunção Ventricular Direita/terapia , Animais , Diferenciação Celular , Células Cultivadas , Criança , Pré-Escolar , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/etiologia , Humanos , Lactente , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais , Esferoides Celulares/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Disfunção Ventricular Direita/complicações
3.
Stem Cells ; 37(12): 1528-1541, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574184

RESUMO

Nearly 1 in every 120 children born has a congenital heart defect. Although surgical therapy has improved survival, many of these children go on to develop right ventricular heart failure (RVHF). The emergence of cardiovascular regenerative medicine as a potential therapeutic strategy for pediatric HF has provided new avenues for treatment with a focus on repairing or regenerating the diseased myocardium to restore cardiac function. Although primarily tried using adult cells and adult disease models, stem cell therapy is relatively untested in the pediatric population. Here, we investigate the ability of electrical stimulation (ES) to enhance the retention and therapeutic function of pediatric cardiac-derived c-kit+ progenitor cells (CPCs) in an animal model of RVHF. Human CPCs isolated from pediatric patients were exposed to chronic ES and implanted into the RV myocardium of rats. Cardiac function and cellular retention analysis showed electrically stimulated CPCs (ES-CPCs) were retained in the heart at a significantly higher level and longer time than control CPCs and also significantly improved right ventricular functional parameters. ES also induced upregulation of extracellular matrix and adhesion genes and increased in vitro survival and adhesion of cells. Specifically, upregulation of ß1 and ß5 integrins contributed to the increased retention of ES-CPCs. Lastly, we show that ES induces CPCs to release higher levels of pro-reparative factors in vitro. These findings suggest that ES can be used to increase the retention, survival, and therapeutic effect of human c-kit+ progenitor cells and can have implications on a variety of cell-based therapies. Stem Cells 2019;37:1528-1541.


Assuntos
Estimulação Elétrica/métodos , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Função Ventricular Direita/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Pré-Escolar , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Recém-Nascido , Integrina beta1/biossíntese , Masculino , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Medicina Regenerativa/métodos , Células-Tronco/citologia
4.
Circ Res ; 120(4): 701-712, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27872050

RESUMO

RATIONALE: Studies have demonstrated that exosomes can repair cardiac tissue post-myocardial infarction and recapitulate the benefits of cellular therapy. OBJECTIVE: We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)-derived exosomes in a rat model of ischemia-reperfusion injury. METHODS AND RESULTS: Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia-reperfusion injury. Echocardiography at day 3 post-myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post-myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. CONCLUSIONS: CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Traumatismo por Reperfusão/terapia , Células-Tronco/fisiologia , Fatores Etários , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Criança , Pré-Escolar , Compreensão , Método Duplo-Cego , Exossomos/transplante , Humanos , Lactente , Recém-Nascido , MicroRNAs/administração & dosagem , Miócitos Cardíacos/transplante , Distribuição Aleatória , Ratos , Ratos Nus , Traumatismo por Reperfusão/fisiopatologia , Transplante de Células-Tronco/métodos
5.
Am J Physiol Heart Circ Physiol ; 312(5): H1002-H1012, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235791

RESUMO

Myocardial infarction (MI) is the most common cause of heart failure. Excessive production of ROS plays a key role in the pathogenesis of cardiac remodeling after MI. NADPH with NADPH oxidase (Nox)2 as the catalytic subunit is a major source of superoxide production, and expression is significantly increased in the infarcted myocardium, especially by infiltrating macrophages. While microRNAs (miRNAs) are potent regulators of gene expression and play an important role in heart disease, there still lacks efficient ways to identify miRNAs that target important pathological genes for treating MI. Thus, the overall objective was to establish a miRNA screening and delivery system for improving heart function after MI using Nox2 as a critical target. With the use of the miRNA-target screening system composed of a self-assembled cell microarray (SAMcell), three miRNAs, miR-106b, miR-148b, and miR-204, were identified that could regulate Nox2 expression and its downstream products in both human and mouse macrophages. Each of these miRNAs were encapsulated into polyketal (PK3) nanoparticles that could effectively deliver miRNAs into macrophages. Both in vitro and in vivo studies in mice confirmed that PK3-miRNAs particles could inhibit Nox2 expression and activity and significantly improve infarct size and acute cardiac function after MI. In conclusion, our results show that miR-106b, miR-148b, and miR-204 were able to improve heart function after myocardial infarction in mice by targeting Nox2 and possibly altering inflammatory cytokine production. This screening system and delivery method could have broader implications for miRNA-mediated therapeutics for cardiovascular and other diseases.NEW & NOTEWORTHY NADPH oxidase (Nox)2 is a promising target for treating cardiovascular disease, but there are no specific inhibitors. Finding endogenous signals that can target Nox2 and other inflammatory molecules is of great interest. In this study, we used high-throughput screening to identify microRNAs that target Nox2 and improve cardiac function after infarction.


Assuntos
Terapia Genética/métodos , Glicoproteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico , Infarto do Miocárdio/genética , NADPH Oxidases/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Ensaios de Triagem em Larga Escala , Humanos , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/administração & dosagem , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , Nanopartículas , Superóxidos/metabolismo
6.
Circ Res ; 116(2): 255-63, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25344555

RESUMO

RATIONALE: Myocardial infarction is a leading cause of death in developed nations, and there remains a need for cardiac therapeutic systems that mitigate tissue damage. Cardiac progenitor cells (CPCs) and other stem cell types are attractive candidates for treatment of myocardial infarction; however, the benefit of these cells may be as a result of paracrine effects. OBJECTIVE: We tested the hypothesis that CPCs secrete proregenerative exosomes in response to hypoxic conditions. METHODS AND RESULTS: The angiogenic and antifibrotic potential of secreted exosomes on cardiac endothelial cells and cardiac fibroblasts were assessed. We found that CPC exosomes secreted in response to hypoxia enhanced tube formation of endothelial cells and decreased profibrotic gene expression in TGF-ß-stimulated fibroblasts, indicating that these exosomes possess therapeutic potential. Microarray analysis of exosomes secreted by hypoxic CPCs identified 11 miRNAs that were upregulated compared with exosomes secreted by CPCs grown under normoxic conditions. Principle component analysis was performed to identify miRNAs that were coregulated in response to distinct exosome-generating conditions. To investigate the cue-signal-response relationships of these miRNA clusters with a physiological outcome of tube formation or fibrotic gene expression, partial least squares regression analysis was applied. The importance of each up- or downregulated miRNA on physiological outcomes was determined. Finally, to validate the model, we delivered exosomes after ischemia-reperfusion injury. Exosomes from hypoxic CPCs improved cardiac function and reduced fibrosis. CONCLUSIONS: These data provide a foundation for subsequent research of the use of exosomal miRNA and systems biology as therapeutic strategies for the damaged heart.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Biologia de Sistemas/métodos , Animais , Animais Recém-Nascidos , Hipóxia Celular/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 15(5): 9036-50, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24853285

RESUMO

Cardiovascular disease is the leading cause of death in the United States and new treatment options are greatly needed. Oxidative stress is increased following myocardial infarction and levels of antioxidants decrease, causing imbalance that leads to dysfunction. Therapy involving catalase, the endogenous scavenger of hydrogen peroxide (H2O2), has been met with mixed results. When over-expressed in cardiomyocytes from birth, catalase improves function following injury. When expressed in the same cells in an inducible manner, catalase showed a time-dependent response with no acute benefit, but a chronic benefit due to altered remodeling. In myeloid cells, catalase over-expression reduced angiogenesis during hindlimb ischemia and prevented monocyte migration. In the present study, due to the large inflammatory response following infarction, we examined myeloid-specific catalase over-expression on post-infarct healing. We found a significant increase in catalase levels following infarction that led to a decrease in H2O2 levels, leading to improved acute function. This increase in function could be attributed to reduced infarct size and improved angiogenesis. Despite these initial improvements, there was no improvement in chronic function, likely due to increased fibrosis. These data combined with what has been previously shown underscore the need for temporal, cell-specific catalase delivery as a potential therapeutic option.


Assuntos
Catalase/metabolismo , Células Mieloides/enzimologia , Infarto do Miocárdio/metabolismo , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Fibrose/patologia , Peróxido de Hidrogênio/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismo , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Peroxidases/metabolismo
8.
ACS Nano ; 17(20): 19613-19624, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37715735

RESUMO

Small extracellular vesicles (sEVs) are promising for cell-based cardiac repair after myocardial infarction. These sEVs encapsulate potent cargo, including microRNAs (miRs), within a bilayer membrane that aids sEV uptake when administered to cells. However, despite their efficacy, sEV therapies are limited by inconsistencies in the sEV release from parent cells and variability in cargo encapsulation. Synthetic sEV mimics with artificial bilayer membranes allow for cargo control but suffer poor stability and rapid clearance when administered in vivo. Here, we developed an sEV-like vehicle (ELV) using an electroporation technique, building upon our previously published work, and investigated the potency of delivering electroporated ELVs with pro-angiogenic miR-126 both in vitro and in vivo to a rat model of ischemia-reperfusion. We show that electroporated miR-126+ ELVs improve tube formation parameters when administered to 2D cultures of cardiac endothelial cells and improve both echocardiographic and histological parameters when delivered to a rat left ventricle after ischemia reperfusion injury. This work emphasizes the value of using electroporated ELVs as vehicles for delivery of select miR cargo for cardiac repair.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Ratos , Animais , Células Endoteliais , MicroRNAs/genética , Infarto do Miocárdio/terapia , Isquemia
9.
Sci Adv ; 9(9): eabo4616, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867699

RESUMO

Small extracellular vesicles (sEVs) play a critical role in cardiac cell therapy by delivering molecular cargo and mediating cellular signaling. Among sEV cargo molecule types, microRNA (miRNA) is particularly potent and highly heterogeneous. However, not all miRNAs in sEV are beneficial. Two previous studies using computational modeling identified miR-192-5p and miR-432-5p as potentially deleterious in cardiac function and repair. Here, we show that knocking down miR-192-5p and miR-432-5p in cardiac c-kit+ cell (CPC)-derived sEVs enhances the therapeutic capabilities of sEVs in vitro and in a rat in vivo model of cardiac ischemia reperfusion. miR-192-5p- and miR-432-5p-depleted CPC-sEVs enhance cardiac function by reducing fibrosis and necrotic inflammatory responses. miR-192-5p-depleted CPC-sEVs also enhance mesenchymal stromal cell-like cell mobilization. Knocking down deleterious miRNAs from sEV could be a promising therapeutic strategy for treatment of chronic myocardial infarction.


Assuntos
Vesículas Extracelulares , MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Células-Tronco , Coração , Antiarrítmicos , Cardiotônicos
10.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292906

RESUMO

The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 haploinsufficient embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of PPARγ to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.

11.
Methods Mol Biol ; 2485: 269-278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618912

RESUMO

Pediatric cardiac-derived c-kit+ cell therapies represent an innovative approach for cardiac tissue repair that have demonstrated promising improvements in recent studies and offer multiple benefits, such as easy isolation and autologous transplant. However, concerns about failure of engraftment and transient paracrine effects have thus far limited their use. To overcome these issues, an appropriate cell delivery vehicle such as a cardiac extracellular matrix (cECM) hydrogel can be utilized. This naturally derived biomaterial can support embedded cells, allowing for local diffusion of paracrine factors, and provide a healthy microenvironment for optimal cellular function. This protocol focuses on combining cardiac-derived c-kit+ cells and a cECM hydrogel to prepare a minimally invasive, dual therapeutic for in vivo delivery. We also outline a detailed method for ultrasound-guided intramyocardial injection of cell-laden hydrogels in a rodent model. Additional steps for labeling cells with a fluorescent dye for in vivo cell tracking are provided.


Assuntos
Hidrogéis , Roedores , Animais , Criança , Ecocardiografia , Matriz Extracelular , Humanos , Miocárdio
12.
Biomaterials ; 283: 121421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219147

RESUMO

Autologous cardiac cell therapy is a promising treatment for combating the right ventricular heart failure (RVHF) that can occur in patients with congenital heart disease (CHD). However, autologous cell therapies suffer from low cell retention following injection and patient-to-patient variability in cell quality. Here, we demonstrate how computational methods can be used to identify mechanisms of cardiac-derived c-Kit+ cell (CPC) reparative capacity and how biomaterials can be designed to improve cardiac patch performance by engaging these mechanisms. Computational modeling revealed the integrin subunit αV (ITGAV) as an important mediator of repair in CPCs with inherently low reparative capacity (CPCslow). We could engage ITGAV on the cell surface and improve reparative capacity by culturing CPCs on electrospun polycaprolactone (PCL) patches coated with fibronectin (PCL + FN). We tested CPCs from 4 different donors and found that only CPCslow with high ITGAV expression (patient 956) had improved anti-fibrotic and pro-angiogenic paracrine secretion on PCL + FN patches. Further, knockdown of ITGAV via siRNA led to loss of this improved paracrine secretion in patient 956 on PCL + FN patches. When implanted in rat model of RVHF, only PCL + FN + 956 patches were able to improve RV function, while PCL +956 patches did not. In total, we demonstrate how cardiac patches can be designed in a patient-specific manner to improve in vitro and in vivo outcomes.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , Animais , Terapia Baseada em Transplante de Células e Tecidos , Criança , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/terapia , Ventrículos do Coração , Humanos , Células-Tronco Multipotentes , Ratos
13.
Biomater Sci ; 10(2): 444-456, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34878443

RESUMO

Pediatric patients with congenital heart defects (CHD) often present with heart failure from increased load on the right ventricle (RV) due to both surgical methods to treat CHD and the disease itself. Patients with RV failure often require transplantation, which is limited due to lack of donor availability and rejection. Previous studies investigating the development and in vitro assessment of a bioprinted cardiac patch composed of cardiac extracellular matrix (cECM) and human c-kit + progenitor cells (hCPCs) showed that the construct has promise in treating cardiac dysfunction. The current study investigates in vivo cardiac outcomes of patch implantation in a rat model of RV failure. Patch parameters including cECM-inclusion and hCPC-inclusion are investigated. Assessments include hCPC retention, RV function, and tissue remodeling (vascularization, hypertrophy, and fibrosis). Animal model evaluation shows that both cell-free and neonatal hCPC-laden cECM-gelatin methacrylate (GelMA) patches improve RV function and tissue remodeling compared to other patch groups and controls. Inclusion of cECM is the most influential parameter driving therapeutic improvements, with or without cell inclusion. This study paves the way for clinical translation in treating pediatric heart failure using bioprinted GelMA-cECM and hCPC-GelMA-cECM patches.


Assuntos
Insuficiência Cardíaca , Células-Tronco , Animais , Criança , Matriz Extracelular , Gelatina , Coração , Humanos , Ratos
14.
Ultrasound Med Biol ; 46(6): 1474-1489, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143861

RESUMO

Nanoscale phase-change contrast agents (PCCAs) have been found to have great potential in non-invasive extravascular imaging and therapeutic delivery. However, the contrast-to-tissue ratio (CTR) of PCCA images is usually limited because of either physiological motion or incomplete cancelation of tissue signal. Therefore, to improve the CTR of PCCA images in the presence of physiological motion, a new imaging technique, ultrafast inter-frame activation ultrasound (UIAU) imaging, is proposed and validated. Results of studies with controlled motion in tissue-mimicking phantoms indicate UIAU could provide significantly higher CTRs (maximum: 17.3 ± 0.9 dB) relative to conventional pulse inversion imaging (maximum CTR: 3.4 ± 1.4 dB). UIAU has CTRs up to 16.1 ± 1.0 dB relative to 3.9 ± 2.3 dB for differential imaging in the presence of physiological motion at 20 mm/s. In vivo imaging of PCCAs in the rat liver also reveals the ability of UIAU to enhance PCCA image contrast in the presence of physiological motion.


Assuntos
Meios de Contraste/administração & dosagem , Imagem Molecular/métodos , Temperatura de Transição , Ultrassonografia/métodos , Animais , Fluorocarbonos , Fígado/diagnóstico por imagem , Masculino , Movimento (Física) , Nanopartículas , Imagens de Fantasmas , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Respiração , Suínos
15.
Nanomedicine (Lond) ; 13(7): 787-801, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29473787

RESUMO

AIM: Current diagnostic tests for myocarditis are invasive and have low diagnostic value. Our aim was to identify potential targeting peptides to detect early myocarditis following intravenous delivery. MATERIALS & METHODS: We used an animal model of experimental autoimmune myocarditis and a phage display library to identify potential targeting peptides. After several steps, we selected two peptides, MyH-PhD-05 and MyH-PhD-120, for in vivo screening using fluorescent imaging. Immunofluorescence and proteonomic analysis was used to identify potential cellular and molecular targets of MyH-PhD-05. Echocardiography was used to assess functional changes. RESULTS: Peptide MyH-PhD-05 was able to detect animals with severe myocarditis even in the absence of functional changes. Immunofluorescence demonstrated that MyH-PhD-05 colocalizes with CD4+ T cells and monocytes (CD11b+) in cardiac infiltrates. CONCLUSION: We identified potential targeting peptides for the diagnosis of myocarditis. Future studies will focus on better identification of potential targets and translating this technology to clinically relevant imaging modalities.


Assuntos
Doenças Autoimunes/diagnóstico , Miocardite/diagnóstico , Cadeias Pesadas de Miosina/isolamento & purificação , Peptídeos/isolamento & purificação , Animais , Doenças Autoimunes/diagnóstico por imagem , Doenças Autoimunes/fisiopatologia , Diagnóstico por Imagem , Modelos Animais de Doenças , Diagnóstico Precoce , Ecocardiografia , Corantes Fluorescentes/administração & dosagem , Humanos , Camundongos , Miocardite/diagnóstico por imagem , Miocardite/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Biblioteca de Peptídeos , Peptídeos/metabolismo
16.
Adv Healthc Mater ; 7(23): e1800672, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30379414

RESUMO

Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D-bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs, and gelatin methacrylate (GelMA). GelMA-cECM bioinks print uniformly with a homogeneous distribution of cECM and hCPCs. hCPCs maintain >75% viability and incorporation of cECM within patches results in a 30-fold increase in cardiogenic gene expression of hCPCs compared to hCPCs grown in pure GelMA patches. Conditioned media from GelMA-cECM patches show increased angiogenic potential (>2-fold) over GelMA alone, as seen by improved endothelial cell tube formation. Finally, patches are retained on rat hearts and show vascularization over 14 d in vivo. This work shows the successful bioprinting and implementation of cECM-hCPC patches for potential use in repairing damaged myocardium.


Assuntos
Bioimpressão , Matriz Extracelular/metabolismo , Células-Tronco/citologia , Animais , Células Cultivadas , Módulo de Elasticidade , Gelatina/química , Cardiopatias/patologia , Cardiopatias/terapia , Cardiopatias/veterinária , Humanos , Hidrogéis/química , Miocárdio/citologia , Miócitos Cardíacos/citologia , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco , Células-Tronco/metabolismo , Engenharia Tecidual , Alicerces Teciduais
17.
ACS Biomater Sci Eng ; 4(1): 200-210, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29457128

RESUMO

Cell therapy is an emerging paradigm for the treatment of heart disease. In spite of the exciting and promising preclinical results, the benefits of cell therapy for cardiac repair in patients have been modest at best. Biomaterials-based approaches may overcome the barriers of poor differentiation and retention of transplanted cells. In this study, we prepared and tested hydrogels presenting extracellular matrix (ECM)-derived adhesion peptides as delivery vehicles for c-kit+ cardiac progenitor cells (CPCs). We assessed their effects on cell behavior in vitro as well as cardiac repair in rats undergoing ischemia reperfusion. Hydrogels presenting the collagen-derived GFOGER peptide induced cardiomyocyte differentiation of CPCs as demonstrated by increased expression of cardiomyocyte structural proteins. However, conditioned media obtained from GFOGER hydrogels showed lower levels of secreted reparative factors. Interestingly, following injection in rats undergoing ischemia-reperfusion, treatment with CPCs encapsulated in nonadhesive RDG-presenting hydrogels resulted in the preservation of cardiac contractility and attenuation of postinfarct remodeling whereas the adhesion peptide-presenting hydrogels did not induce any functional improvement. Retention of cells was significantly higher when delivered with nonadhesive hydrogels compared to ECM-derived peptide gels. These data suggest that factors including cell differentiation state, paracrine factors and interaction with biomaterials influence the effectiveness of biomaterials-based cell therapy. A holistic consideration of these multiple variables should be included in cell-biomaterial combination therapy designs.

18.
Biomaterials ; 83: 12-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773660

RESUMO

In this study, we used deoxyribozyme (DNAzyme) functionalized gold nanoparticles (AuNPs) to catalytically silence tumor necrosis factor-α (TNF-α) in vivo as a potential therapeutic for myocardial infarction (MI). Using primary macrophages as a model, we demonstrated 50% knockdown of TNF-α, which was not attainable using Lipofectamine-based approaches. Local injection of DNAzyme conjugated to gold particles (AuNPs) in the rat myocardium yielded TNF-α knockdown efficiencies of 50%, which resulted in significant anti-inflammatory effects and improvement in acute cardiac function following MI. Our results represent the first example showing the use of DNAzyme AuNP conjugates in vivo for viable delivery and gene regulation. This is significant as TNF-α is a multibillion dollar drug target implicated in many inflammatory-mediated disorders, thus underscoring the potential impact of DNAzyme-conjugated AuNPs.


Assuntos
Anti-Inflamatórios/uso terapêutico , DNA Catalítico/metabolismo , Técnicas de Silenciamento de Genes , Ouro/química , Nanopartículas Metálicas/química , Infarto do Miocárdio/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Animais , Anti-Inflamatórios/farmacologia , Morte Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Fluorescência , Coração/efeitos dos fármacos , Coração/fisiopatologia , Testes de Função Cardíaca/efeitos dos fármacos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Células RAW 264.7 , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos
19.
Stem Cells Transl Med ; 5(7): 883-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27151913

RESUMO

UNLABELLED: Children with congenital heart diseases have increased morbidity and mortality, despite various surgical treatments, therefore warranting better treatment strategies. Here we investigate the role of age of human pediatric cardiac progenitor cells (hCPCs) on ventricular remodeling in a model of juvenile heart failure. hCPCs isolated from children undergoing reconstructive surgeries were divided into 3 groups based on age: neonate (1 day to 1 month), infant (1 month to 1 year), and child (1 to 5 years). Adolescent athymic rats were subjected to sham or pulmonary artery banding surgery to generate a model of right ventricular (RV) heart failure. Two weeks after surgery, hCPCs were injected in RV musculature noninvasively. Analysis of cardiac function 4 weeks post-transplantation demonstrated significantly increased tricuspid annular plane systolic excursion and RV ejection fraction and significantly decreased wall thickness and fibrosis in rats transplanted with neonatal hCPCs compared with saline-injected rats. Computational modeling and systems biology analysis were performed on arrays and gave insights into potential mechanisms at the microRNA and gene level. Mechanisms including migration and proliferation assays, as suggested by computational modeling, showed improved chemotactic and proliferative capacity of neonatal hCPCs compared with infant/child hCPCs. In vivo immunostaining further suggested increased recruitment of stem cell antigen 1-positive cells in the right ventricle. This is the first study to assess the role of hCPC age in juvenile RV heart failure. Interestingly, the reparative potential of hCPCs is age-dependent, with neonatal hCPCs exerting the maximum beneficial effect compared with infant and child hCPCs. SIGNIFICANCE: Stem cell therapy for children with congenital heart defects is moving forward, with several completed and ongoing clinical trials. Although there are studies showing how children differ from adults, few focus on the differences among children. This study using human cardiac progenitor cells shows age-related changes in the reparative ability of cells in a model of pediatric heart failure and uses computational and systems biology to elucidate potential mechanisms.


Assuntos
Envelhecimento/fisiologia , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/terapia , Miocárdio/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Adulto , Animais , Proliferação de Células , Células Cultivadas , Pré-Escolar , Cardiopatias Congênitas/patologia , Insuficiência Cardíaca/patologia , Humanos , Lactente , Recém-Nascido , Ratos , Ratos Nus , Ratos Transgênicos , Remodelação Ventricular
20.
Tissue Eng Part A ; 21(17-18): 2315-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25982380

RESUMO

Myocardial infarction (MI) is the leading cause of death worldwide. Notch1 signaling plays a critical role in cardiac development, in survival, cardiogenic lineage commitment, differentiation of cardiac stem/progenitor cells, and in regenerative responses following myocardial injury. The objective of this study was the evaluation of the therapeutic effect of delivering the Notch ligand-containing hydrogels in a rat model of MI. Self-assembling peptide (SAP) hydrogels were functionalized with a peptide mimic of the Notch1 ligand Jagged1 (RJ). In rats subjected to experimental MI, delivery of RJ-containing hydrogel to the infarcted heart resulted in improvement in cardiac function back to sham-operated levels. A significant decrease in fibrosis and an increase in the endothelial vessel area and Ki67 expression were also observed in rats treated with the RJ hydrogels compared to untreated rats or rats treated with unmodified or scrambled peptide hydrogels. This study demonstrates the functional benefit of Notch1-activating peptide delivered in SAP hydrogels for cardiac repair.


Assuntos
Hidrogéis/farmacologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Notch/metabolismo , Animais , Cardiomegalia/complicações , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Fibrose , Testes de Função Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Antígeno Ki-67/metabolismo , Ligantes , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA