Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 32(11): 2539-48, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26928121

RESUMO

The kinetics of micelles involving photosensitive surfactants is still not well understood. In this work, we unravel the mechanistic pathways involved in the micelle formation and dissolution of photocontrollable micelles. We focus on the fast self-assembly processes of photosensitive cationic azobenzene-containing surfactants (AzoTMA) that display a change in hydrophobicity induced by a reversible cis-trans conformational transition upon exposure to light. By combining both in situ time-resolved small-angle X-ray scattering (SAXS) and light scattering, we characterized the detailed structure and phase behavior of AzoTMA in mixtures of water and dimethylformamide (DMF). Time-resolved synchrotron SAXS with monochromatic light as a trigger enabled us to observe the nonequilibrium formation and dissolution process of micelles (demicellization) directly on the nanoscale with a time resolution starting from milliseconds. The structural results show that in pure water UV-light illumination leads to a 12% reduction of the aggregation number of the micelles and more than a 50% increase in the critical micelle concentration (CMC). Close to the CMC, adjusted by the addition of DMF, UV light illumination leads to a complete dissolution of the micelles, while shining blue light reverses the process and leads to the reformation of micelles. The UV-triggered dissolution follows a two-step mechanism; the first and rapid (second time scale) release of unimers is followed by a slower decomposition of the micelles (over tens of seconds) as a result of an increase in temperature due to optical absorption. Similarly, the reverse process, i.e., micelle formation, occurs rapidly upon photoconversion to trans conformers under blue light, and micelles are disrupted at long exposure time due to the optical absorption and corresponding increase in temperature. Interestingly, the coexistence of unimers with regular micelles is found at all times, and no other transient assemblies could be detected by SAXS.

2.
J Colloid Interface Sci ; 461: 50-55, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26397909

RESUMO

We report a simple and versatile method to functionalize anionic colloid particles and control particle solubility. Poly(lysine)-based copolymers (PLL) grafted with polyethylene oxide (PLL-g-PEG) or poly(N-isopropylacrylamide) (PLL-g-PNIPAM) spontaneously adsorb on bare beads dispersed in aqueous solutions of the copolymers. The final composition of the mixed ad-layers formed (i.e. PEG/PNIPAM ratio) was adjusted by the polymer concentrations in solutions. While the (PLL-g-PEG)-coated particles were stable in a wide range of temperature, the presence of PLL-g-PNIPAM in the outer layer provided a reversible temperature-triggered aggregation at 32±1 °C. In the range of PNIPAM fraction going from 100% (beads fully covered by PLL-g-PNIPAM) down to a threshold 20% weight ratio (with 80% PLL-g-PEG), the particles aggregated rapidly to form micrometer size clusters. Below 20% weight fraction of PLL-g-PNIPAM, the kinetic was drastically lowered. Using PLL derivatives provides a straightforward route allowing to control the fraction of a functional chain (here PNIPAM) deposited on PEGylated particles, and in turn to adjust surface interaction and here the rate of particle-particle aggregation as a function of the density of functional chains. This approach can be generalized to many anionic surfaces onto which PLL is known to adhere tightly, such as glass or silica.


Assuntos
Resinas Acrílicas/química , Polietilenoglicóis/química , Polilisina/análogos & derivados , Adsorção , Ânions/química , Estrutura Molecular , Tamanho da Partícula , Polilisina/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA