Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 33(7): 1402-1410, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35728884

RESUMO

BACKGROUND: Chronic hypomagnesemia is commonly due to diarrhea, alcoholism, and drugs. More rarely, it is caused by genetic defects in the effectors of renal magnesium reabsorption. METHODS: In an adult patient with acquired severe hypomagnesemia, hypocalcemia, tubulointerstitial nephropathy, and rapidly progressing kidney injury, similarities between the patient's presentation and features of genetic disorders of renal magnesium transport prompted us to investigate whether the patient had an acquired autoimmune cause of renal magnesium wasting. To determine if the patient's condition might be explained by autoantibodies directed against claudin-16 or claudin-19, transmembrane paracellular proteins involved in renal magnesium absorption, we conducted experiments with claudin knockout mice and transfected mouse kidney cells expressing human claudin-16 or claudin-19. We also examined effects on renal magnesium handling in rats given intravenous injections of IgG purified from sera from the patient or controls. RESULTS: Experiments with the knockout mice and in vitro transfected cells demonstrated that hypomagnesemia in the patient was causally linked to autoantibodies directed against claudin-16, which controls paracellular magnesium reabsorption in the thick ascending limb of Henle's loop. Intravenous injection of IgG purified from the patient's serum induced a marked urinary waste of magnesium in rats. Immunosuppressive treatment combining plasma exchange and rituximab was associated with improvement in the patient's GFR, but hypomagnesemia persisted. The patient was subsequently diagnosed with a renal carcinoma that expressed a high level of claudin-16 mRNA. CONCLUSIONS: Pathogenic claudin-16 autoantibodies represent a novel autoimmune cause of specific renal tubular transport disturbances and tubulointerstitial nephropathy. Screening for autoantibodies targeting claudin-16, and potentially other magnesium transporters or channels in the kidney, may be warranted in patients with acquired unexplained hypomagnesemia.


Assuntos
Hipocalcemia , Nefrite Intersticial , Animais , Autoanticorpos , Claudinas/genética , Imunoglobulina G , Magnésio , Camundongos , Camundongos Knockout , Ratos
2.
J Am Soc Nephrol ; 33(12): 2211-2231, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280286

RESUMO

BACKGROUND: The mechanisms regulating CD8+ T cell migration to nonlymphoid tissue during inflammation have not been fully elucidated, and the migratory properties of effector memory CD8+ T cells that re-express CD45RA (TEMRA CD8+ T cells) remain unclear, despite their roles in autoimmune diseases and allotransplant rejection. METHODS: We used single-cell proteomic profiling and functional testing of CD8+ T cell subsets to characterize their effector functions and migratory properties in healthy volunteers and kidney transplant recipients with stable or humoral rejection. RESULTS: We showed that humoral rejection of a kidney allograft is associated with an accumulation of cytolytic TEMRA CD8+ T cells in blood and kidney graft biopsies. TEMRA CD8+ T cells from kidney transplant recipients exhibited enhanced migratory properties compared with effector memory (EM) CD8+ T cells, with enhanced adhesion to activated endothelium and transmigration in response to the chemokine CXCL12. CXCL12 directly triggers a purinergic P2×4 receptor-dependent proinflammatory response of TEMRA CD8+ T cells from transplant recipients. The stimulation with IL-15 promotes the CXCL12-induced migration of TEMRA and EM CD8+ T cells and promotes the generation of functional PSGL1, which interacts with the cell adhesion molecule P-selectin and adhesion of these cells to activated endothelium. Although disruption of the interaction between functional PSGL1 and P-selectin prevents the adhesion and transmigration of both TEMRA and EM CD8+ T cells, targeting VLA-4 or LFA-1 (integrins involved in T cell migration) specifically inhibited the migration of TEMRA CD8+ T cells from kidney transplant recipients. CONCLUSIONS: Our findings highlight the active role of TEMRA CD8+ T cells in humoral transplant rejection and suggest that kidney transplant recipients may benefit from therapeutics targeting these cells.


Assuntos
Linfócitos T CD8-Positivos , Transplante de Rim , Humanos , Transplantados , Selectina-P/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Rejeição de Enxerto , Memória Imunológica , Proteômica , Antígenos Comuns de Leucócito/metabolismo , Subpopulações de Linfócitos T/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902067

RESUMO

The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.


Assuntos
Transplante de Rim , Pancreatite , Traumatismo por Reperfusão , Humanos , Inflamação , Pâncreas
4.
J Autoimmun ; 129: 102826, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378380

RESUMO

The critical role of neutrophils in pathological inflammation, notably in various autoimmune disorders, is currently the focus of renewed interest. Here, we demonstrate for the first time that activation of neutrophils with various inflammatory stimuli induces the release of extracellular vesicles (EVs) that are internalized by endothelial cells (ECs), thus leading to the transfer of miR-223, miR-142-3p and miR-451 and subsequent endothelial damage. Indeed, while miR-223 has little effect on EC responses, we show that the induced expression of miR-142-3p and miR-451 in ECs results in profound cell damage, especially in inflammatory conditions, characterized by a dramatic increase in cell apoptosis, impaired angiogenic repair responses, and the induction of IL-6, IL-8, CXCL10 and CXCL11 expression. We show that the strong deleterious effect of miR-142-3p may be due in part to its ability to block the activation of ERK1/2 and eNOS-mediated signals in ECs. miR-142-3p also inhibits the expression of RAC1, ROCK2 and CLIC4, three genes that are critical for EC migration and angiogenic responses. Importantly, miR-223, miR-142-3p and miR-451 are markedly increased in kidney biopsies from patients with active ANCA-associated vasculitis, a severe autoimmune disease that is prototypical of a neutrophil-induced microvascular damage. Taken together, our results suggest that miR-142-3p and miR-451 released in EVs by activated neutrophils can target EC to trigger an inflammatory cascade and induce direct vascular damage, and that therapeutic strategies based on the inhibition of these miRNAs in ECs will have implications for neutrophil-mediated inflammatory diseases.


Assuntos
Vesículas Extracelulares , MicroRNAs , Canais de Cloreto/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/metabolismo , MicroRNAs/genética , Neutrófilos/metabolismo
5.
Am J Transplant ; 19(1): 77-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969188

RESUMO

DEPTOR is an evolutionarily conserved cell-intrinsic binding partner of mTOR that functions as a negative regulator of signaling responses. In this study, we show that DEPTOR is expressed within CD4+ T cells, and we observed that its relative level of expression modulates differentiation as well as glucose utilization within CD4+ T effectors in vitro. Using knock-in mice, we also find that induced expression of DEPTOR within CD4+ T regulatory cells stabilizes Foxp3 expression, shifts metabolism toward oxidative phosphorylation, and increases survival and suppressive function. In vivo, fully MHC mismatched cardiac allograft survival is significantly prolonged in knock-in recipients and sustained recipient expression of DEPTOR in combination with costimulatory blockade induces long-term graft survival. Furthermore, we show that the induced expression of DEPTOR in CD4+ T effectors fails to inhibit acute allograft rejection. Rather, prolonged survival is dominantly mediated via induced expression and function of DEPTOR within recipient CD4+ T regulatory cells. These collective findings identify DEPTOR as a novel protein that functions in CD4+ T cells to augment immunoregulation in vitro and in vivo.


Assuntos
Transplante de Coração , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transplante de Pele , Linfócitos T Reguladores/citologia , Animais , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Rejeição de Enxerto , Sobrevivência de Enxerto/efeitos dos fármacos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigênio/química , Fosforilação , Transplante Homólogo
6.
Biochem Biophys Res Commun ; 519(4): 667-673, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31542230

RESUMO

Calcineurin Inhibitors (CNIs) are routinely used for immunosuppression following solid organ transplantation. However, the prolonged use of these agents lead to organ fibrosis which limits their efficacy. CNIs induce TGFß expression, which is reported to augment endothelial-to-mesenchymal transition (EndMT), but their role in this process is not known. In these studies, we find that the CNIs FK506 and cyclosporine (CsA) are potent to increase endothelial cell (EC) proliferation using established in vitro assays (P < 0.05). Furthermore, using phosphokinase arrays, we find that each CNI activates the MAPK and Akt/mTOR signaling pathways, and that pharmacological inhibition of each pathway targets CNI-induced proliferative responses (P < 0.001). EndMT was evaluated by FACS for N-cadherin and CD31 expression and by qPCR for the expression of α-smooth muscle actin, N-cadherin and Snail. We find that CNIs do not directly induce dedifferentiation, while TGFß and hypoxia induce EndMT in small numbers of EC. In contrast, the treatment of EC with the inflammatory cytokine TNFα was potent to elicit an EndMT response, and its effects were most notably in EC following proliferation/doubling. Taken together, these observations suggest that CNIs elicit proliferative responses, which enhance EndMT in association with local inflammation. The clinical implications of these findings are that anti-proliferative therapeutics have high potential to target the initiation of this EndMT response.


Assuntos
Inibidores de Calcineurina/farmacologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células CHO , Caderinas/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Ciclosporina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Tacrolimo/farmacologia
7.
Xenotransplantation ; 26(6): e12535, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31293002

RESUMO

Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.


Assuntos
Anticorpos/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio/metabolismo , Transcriptoma/genética , Animais , Anticorpos/imunologia , Células Endoteliais/imunologia , Humanos , Imunoglobulina G/metabolismo , Transcriptoma/imunologia , Transplante Heterólogo/métodos
8.
Blood ; 125(6): 1038-46, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25498910

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is classically described to result from a dysregulation of the complement alternative pathway, leading to glomerular endothelial cell (EC) damage and thrombosis. However, recent findings in families with aHUS of mutations in the DGKE gene, which is not an integral component of the complement cascade, led us to consider other pathophysiologic mechanisms for this disease. Here, we demonstrate that loss of DGKε expression/activity in EC induces an increase in ICAM-1 and tissue factor expression through the upregulation of p38-MAPK-mediated signals, thus highlighting a proinflammatory and prothrombotic phenotype of DGKε-deficient ECs. More interestingly, DGKE silencing also increases EC apoptosis and impairs EC migration and angiogenesis in vitro, suggesting that DGKE loss-of-function mutations impair EC repair and angiogenesis in vivo. Conversely, DGKE knockdown moderately decreases the expression of the complement inhibitory protein MCP on quiescent EC, but does not induce complement deposition on their surface in vitro. Collectively, our data strongly suggest that in DGKE-associated aHUS patients, thrombotic microangiopathy results from impaired EC proliferation and angiogenesis rather than complement-mediated EC lesions. Our study expands the current knowledge of aHUS mechanisms and has implications for the treatment of patients with isolated DGKE mutations.


Assuntos
Ativação do Complemento , Diacilglicerol Quinase/genética , Células Endoteliais/imunologia , Interferência de RNA , Morte Celular , Movimento Celular , Complemento C3/imunologia , Diacilglicerol Quinase/imunologia , Selectina E/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , RNA Interferente Pequeno/genética
9.
J Am Soc Nephrol ; 27(6): 1665-77, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26471127

RESUMO

C3 glomerulopathy is a recently described form of CKD. C3GN is a subtype of C3 glomerulopathy characterized by predominant C3 deposits in the glomeruli and is commonly the result of acquired or genetic abnormalities in the alternative pathway (AP) of the complement system. We identified and characterized the first mutation of the C3 gene (p. I734T) in two related individuals diagnosed with C3GN. Immunofluorescence and electron microscopy studies showed C3 deposits in the subendothelial space, associated with unusual deposits located near the complement receptor 1 (CR1)-expressing podocytes. In vitro, this C3 mutation exhibited decreased binding to CR1, resulting in less CR1-dependent cleavage of C3b by factor 1. Both patients had normal plasma C3 levels, and the mutant C3 interacted with factor B comparably to wild-type (WT) C3 to form a C3 convertase. Binding of mutant C3 to factor H was normal, but mutant C3 was less efficiently cleaved by factor I in the presence of factor H, leading to enhanced C3 fragment deposition on glomerular cells. In conclusion, our results reveal that a CR1 functional deficiency is a mechanism of intraglomerular AP dysregulation and could influence the localization of the glomerular C3 deposits.


Assuntos
Complemento C3/genética , Glomerulonefrite Membranoproliferativa/genética , Receptores de Complemento 3b/genética , Adulto , Fator H do Complemento/genética , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
10.
Pediatr Nephrol ; 31(1): 41-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25903640

RESUMO

Advances in therapeutics have dramatically improved short-term graft survival, but the incidence of chronic rejection has not changed in the past 20 years. New insights into mechanism are sorely needed at this time and it is hoped that the development of predictive biomarkers will pave the way for the emergence of preventative therapeutics. In this review, we discuss a paradigm suggesting that sequential changes within graft endothelial cells (EC) lead to an intragraft microenvironment that favors the development of chronic rejection. Key initial events include EC injury, activation and uncontrolled leukocyte-induced angiogenesis. We propose that all of these early changes in the microvasculature lead to abnormal blood flow patterns, local tissue hypoxia, and an associated overexpression of HIF-1α-inducible genes, including vascular endothelial growth factor. We also discuss how cell intrinsic regulators of mTOR-mediated signaling within EC are of critical importance in microvascular stability and may thus have a role in the inhibition of chronic rejection. Finally, we discuss recent findings indicating that miRNAs may regulate EC stability, and we review their potential as novel non-invasive biomarkers of allograft rejection. Overall, this review provides insights into molecular events, genes, and signals that promote chronic rejection and their potential as biomarkers that serve to support the future development of interruption therapeutics.


Assuntos
Células Endoteliais/metabolismo , Rejeição de Enxerto/etiologia , Transplante de Rim/efeitos adversos , Rim/irrigação sanguínea , Microvasos/metabolismo , Pesquisa Translacional Biomédica , Aloenxertos , Animais , Biomarcadores/metabolismo , Microambiente Celular , Doença Crônica , Células Endoteliais/imunologia , Regulação da Expressão Gênica , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/fisiopatologia , Sobrevivência de Enxerto , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Microvasos/imunologia , Microvasos/fisiopatologia , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
11.
Blood ; 122(10): 1833-42, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23881914

RESUMO

The maintenance of normal tissue homeostasis and the prevention of chronic inflammatory disease are dependent on the active process of inflammation resolution. In endothelial cells (ECs), proinflammation results from the activation of intracellular signaling responses and/or the inhibition of endogenous regulatory/pro-resolution signaling networks that, to date, are poorly defined. In this study, we find that DEP domain containing mTOR interacting protein (DEPTOR) is expressed in different microvascular ECs in vitro and in vivo, and using a small interfering RNA (siRNA) knockdown approach, we find that it regulates mammalian target of rapamycin complex 1 (mTORC1), extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 1 activation in part through independent mechanisms. Moreover, using limited gene arrays, we observed that DEPTOR regulates EC activation including mRNA expression of the T-cell chemoattractant chemokines CXCL9, CXCL10, CXCL11, CX3CL1, CCL5, and CCL20 and the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (P < .05). DEPTOR siRNA-transfected ECs also bound increased numbers of peripheral blood mononuclear cells (P < .005) and CD3+ T cells (P < .005) in adhesion assays in vitro and had increased migration and angiogenic responses in spheroid sprouting (P < .01) and wound healing (P < .01) assays. Collectively, these findings define DEPTOR as a critical upstream regulator of EC activation responses and suggest that it plays an important role in endogenous mechanisms of anti-inflammation and pro-resolution.


Assuntos
Células Endoteliais da Veia Umbilical Humana/patologia , Inflamação/patologia , Neovascularização Patológica/patologia , Serina-Treonina Quinases TOR/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Comunicação Celular/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Inflamação/genética , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/metabolismo , Neovascularização Patológica/genética , Ligação Proteica , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/genética
12.
Curr Opin Organ Transplant ; 20(1): 13-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25563987

RESUMO

PURPOSE OF REVIEW: New developments suggest that the graft itself and molecules expressed within the graft microenvironment dictate the phenotype and evolution of chronic rejection. RECENT FINDINGS: Once ischemia-reperfusion injury, cellular and humoral immune responses target the microvasculature, the associated local tissue hypoxia results in hypoxia-inducible factor 1α-dependent expression of pro-inflammatory and proangiogenic growth factors including vascular endothelial growth factor (VEGF) as a physiological response to injury. Local expression of VEGF can promote the recruitment of alloimune T cells into the graft. mTOR/Akt signaling within endothelial cells regulates cytokine- and alloantibody-induced activation and proliferation and their proinflammatory phenotype. Inhibition of mTOR and/or Akt results in an anti-inflammatory phenotype and enables the expression of coinhibitory molecules that limit local T cell reactivation and promotes immunoregulation. Semaphorin family molecules may bind to neuropilin-1 on regulatory T cell subsets to stabilize functional responses. Ligation of neuropilin-1 on Tregs also inhibits Akt-induced responses suggesting common theme for enhancing local immunoregulation and long-term graft survival. SUMMARY: Events within the graft initiated by mTOR/Akt-induced signaling promote the development of chronic rejection. Semaphorin-neuropilin biology represents a novel avenue for targeting this biology and warrants further investigation.


Assuntos
Rejeição de Enxerto , Transplante de Órgãos , Transdução de Sinais , Aloenxertos , Animais , Doença Crônica , Humanos
13.
Cell Mol Gastroenterol Hepatol ; 18(1): 133-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38428588

RESUMO

BACKGROUND & AIMS: The presence of myenteric plexitis in the proximal resection margins is a predictive factor of early postoperative recurrence in Crohn's disease. To decipher the mechanisms leading to their formation, T-cell interactions with enteric neural cells were studied in vitro and in vivo. METHODS: T cells close to myenteric neural cells were retrospectively quantified in ileocolonic resections from 9 control subjects with cancer and 20 patients with Crohn's disease. The mechanisms involved in T-cell adhesion were then investigated in co-cultures of T lymphocytes with enteric glial cells (glia). Finally, the implication of adhesion molecules in the development of plexitis and colitis was studied in vitro but also in vivo in Winnie mice. RESULTS: The mean number of T cells close to glia, but not neurons, was significantly higher in the myenteric ganglia of relapsing patients with Crohn's disease (2.42 ± 0.5) as compared with controls (0.36 ± 0.08, P = .0007). Co-culture experiments showed that exposure to proinflammatory cytokines enhanced T-cell adhesion to glia and increased intercellular adhesion molecule-1 (ICAM-1) expression in glia. We next demonstrated that T-cell adhesion to glia was inhibited by an anti-ICAM-1 antibody. Finally, using the Winnie mouse model of colitis, we showed that the blockage of ICAM-1/lymphocyte function-associated antigen-1 (LFA-1) with lifitegrast reduced colitis severity and decreased T-cell infiltration in the myenteric plexus. CONCLUSIONS: Our present work argues for a role of glia-T-cell interaction in the development of myenteric plexitis through the adhesion molecules ICAM-1/LFA-1 and suggests that deciphering the functional consequences of glia-T-cell interaction is important to understand the mechanisms implicated in the development and recurrence of Crohn's disease.


Assuntos
Adesão Celular , Técnicas de Cocultura , Doença de Crohn , Molécula 1 de Adesão Intercelular , Plexo Mientérico , Neuroglia , Linfócitos T , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Doença de Crohn/patologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Plexo Mientérico/patologia , Plexo Mientérico/metabolismo , Plexo Mientérico/imunologia , Neuroglia/metabolismo , Neuroglia/patologia , Neuroglia/imunologia , Estudos Retrospectivos , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Transplantation ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38995954

RESUMO

BACKGROUND: The clinical standard for pancreas preservation for transplantation is static cold storage (SCS). Oxygenation during preservation has been shown to be advantageous in clinical studies. This study evaluates the efficiency of different oxygenation modalities during hypothermic pancreas preservation. METHODS: Thirty-two porcine pancreases were procured in a controlled donation after circulatory death model and were divided to be preserved in 8 groups: (1) SCS, (2) hypothermic machine perfusion (HMP), (3) hypothermic oxygenated machine perfusion (HOPE) with 21% oxygen, (4) HOPE and 100%, (5) SCS and oxygen carrier, M101, (6) HMP and M101, (7) HOPE 21% and M101, and (8) HOPE 100% and M101. All the groups underwent 24 h of hypothermic preservation, followed by 2 h of normothermic reperfusion. Oxygen partial pressures were assessed using parenchymal probes. Perfusion parameters, perfusate samples, and tissue biopsies were analyzed. RESULTS: This study showed that HMP was linked to higher tissue oxygen partial pressures, lower succinate levels, and better reperfusion parameters. Furthermore, the addition of M101 to either SCS or HMP was associated with lower succinate and creatinine phosphokinase accumulation, suggesting a protective effect against ischemia. CONCLUSIONS: Our research has demonstrated the efficacy of machine perfusion in hypothermic conditions in providing oxygen to the pancreas during preservation and conditioning the pancreatic microvasculature for reperfusion during transplantation. Furthermore, the addition of M101 suggests a protective effect on the graft from ischemia.

15.
Transplant Direct ; 9(6): e1490, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250484

RESUMO

Presensitized patients awaiting a kidney transplant have a lower graft survival and a longer waiting time because of the limited number of potential donors and the higher risk of antibody-mediated rejection (AMR), particularly in the early posttransplant period, because of preformed donor-specific antibodies binding major histocompatibility complex (MHC) molecules expressed by the graft endothelium followed by the activation of the complement. Advances in kidney preservation techniques allow the development of ex vivo treatment of transplants. We hypothesized that masking MHC ex vivo before transplantation could help to prevent early AMR in presensitized recipients. We evaluated a strategy of MHC I masking by an antibody during ex vivo organ perfusion in a porcine model of kidney transplantation in alloimmunized recipients. Methods: Through the in vitro calcein-release assay and flow cytometry, we evaluated the protective effect of a monoclonal anti-swine leukocyte antigen class I antibody (clone JM1E3) against alloreactive IgG complement-dependent cytotoxicity toward donor endothelial cells. Kidneys perfused ex vivo with JM1E3 during hypothermic machine perfusion were transplanted to alloimmunized recipients. Results: In vitro incubation of endothelial cells with JM1E3 decreased alloreactive IgG cytotoxicity (mean complement-dependent cytotoxicity index [% of control condition] with 1 µg/mL 74.13% ± 35.26 [calcein assay] and 66.88% ± 33.46 [cytometry]), with high interindividual variability. After transplantation, acute AMR occurred in all recipients on day 1, with signs of complement activation (C5b-9 staining) as soon as 1 h after transplantation, despite effective JM1E3 binding on graft endothelium. Conclusions: Despite a partial protective effect of swine leukocyte antigen I masking with JM1E3 in vitro, ex vivo perfusion of the kidney with JM1E3 before transplantation was not sufficient alone at preventing or delaying AMR in highly sensitized recipients.

16.
Biochem Biophys Res Commun ; 419(1): 66-71, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22326918

RESUMO

TNF-family molecules induce the expression Vascular Endothelial Growth Factor (VEGF) in endothelial cells (EC) and elicit signaling responses that result in angiogenesis. However, the role of TNF-receptor associated factors (TRAFs) as upstream regulators of VEGF expression or as mediators of angiogenesis is not known. In this study, HUVEC were cotransfected with a full-length VEGF promoter-luciferase construct and siRNAs to TRAF 1, -2, -3, -5, -6, and promoter activity was measured. Paradoxically, rather than inhibiting VEGF expression, we found that knockdown of TRAF6 resulted in a 4-6-fold increase in basal VEGF promoter activity compared to control siRNA-transfected EC (P<0.0001). In addition, knockdown of TRAF 1, -2, -3 or -5 resulted in a slight increase or no change in VEGF promoter activation. Using [(3)H]thymidine incorporation assays as well as the in vitro wound healing assay, we also found that basal rates of EC proliferation and migration were increased following TRAF6 knockdown; and this response was inhibited by the addition of a blocking anti-VEGF antibody into cell cultures. Using a limited protein array to gain insight into TRAF6-dependent intermediary signaling responses, we observed that TRAF6 knockdown resulted in an increase in the activity of Src family kinases. In addition, we found that treatment with AZD-0530, a pharmacological Src inhibitor, reduced the regulatory effect of TRAF6 knockdown on VEGF promoter activity. Collectively, these findings define a novel pro-angiogenic signaling response in EC that is regulated by TRAF6.


Assuntos
Células Endoteliais da Veia Umbilical Humana/fisiologia , Neovascularização Fisiológica/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ativação Transcricional , Benzodioxóis/farmacologia , Movimento Celular/genética , Proliferação de Células , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Luciferases/genética , Regiões Promotoras Genéticas , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , Fator 6 Associado a Receptor de TNF/genética , Fator A de Crescimento do Endotélio Vascular/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
17.
Biochem Biophys Res Commun ; 425(2): 244-9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828505

RESUMO

Agents that target the activity of the mammalian target of rapamycin (mTOR) kinase in humans are associated with proteinuria. However, the mechanisms underlying mTOR activity and signaling within the kidney are poorly understood. In this study, we developed a sensitive immunofluorescence technique for the evaluation of activated pmTOR and its associated signals in situ. While we find that pmTOR is rarely expressed in normal non-renal tissues, we consistently find intense expression in glomeruli within normal mouse and human kidneys. Using double staining, we find that the expression of pmTOR co-localizes with nephrin in podocytes and expression appears minimal within other cell types in the glomerulus. In addition, we found that pmTOR was expressed on occasional renal tubular cells within mouse and human kidney specimens. We also evaluated mTOR signaling in magnetic bead-isolated glomeruli from normal mice and, by Western blot analysis, we confirmed function of the pathway in glomerular cells vs. interstitial cells. Furthermore, we found that the activity of the pathway as well as the expression of VEGF, a target of mTOR-induced signaling, were reduced within glomeruli of mice following treatment with rapamycin. Collectively, these findings demonstrate that the mTOR signaling pathway is constitutively hyperactive within podocytes. We suggest that pmTOR signaling functions to regulate glomerular homeostasis in part via the inducible expression of VEGF.


Assuntos
Glomérulos Renais/enzimologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Imunofluorescência , Homeostase , Humanos , Glomérulos Renais/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/enzimologia , Transdução de Sinais , Sirolimo/farmacologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
18.
Front Immunol ; 13: 932242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990687

RESUMO

Long-term allograft survival in allotransplantation, especially in kidney and heart transplantation, is mainly limited by the occurrence of antibody-mediated rejection due to anti-Human Leukocyte Antigen antibodies. These types of rejection are difficult to handle and chronic endothelial damages are often irreversible. In the settings of ABO-incompatible transplantation and xenotransplantation, the presence of antibodies targeting graft antigens is not always associated with rejection. This resistance to antibodies toxicity seems to associate changes in endothelial cells phenotype and modification of the immune response. We describe here these mechanisms with a special focus on endothelial cells resistance to antibodies. Endothelial protection against anti-HLA antibodies has been described in vitro and in animal models, but do not seem to be a common feature in immunized allograft recipients. Complement regulation and anti-apoptotic molecules expression appear to be common features in all these settings. Lastly, pharmacological interventions that may promote endothelial cell protection against donor specific antibodies will be described.


Assuntos
Sistema ABO de Grupos Sanguíneos , Transplante de Rim , Animais , Anticorpos , Células Endoteliais , Rejeição de Enxerto/prevenção & controle , Transplante Heterólogo , Transplante Homólogo
19.
Nephrol Dial Transplant ; 26(5): 1523-32, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20935016

RESUMO

BACKGROUND: Buffalo/Mna rats spontaneously develop a nephrotic syndrome (NS). We have demonstrated that this rat nephropathy recurs after renal transplantation. We studied this recurrence by kinetic analysis of graft lesions, infiltrating cells and cytokines. METHODS: Kidneys from LEW.1 W rats were grafted into proteinuric Buff/Mna or healthy Wistar Furth recipients. Kidney samples were harvested before, during and after the occurrence of proteinuria and analysed for renal histology, cell populations and cytokine transcripts. Results were compared with the evolution of the initial disease studied previously. RESULTS: Both groups showed normal graft histology at Day 7 and an increasing podocyte swelling at Day 45 was seen only in the Buff/Mna recipients. At Day 80, glomerular atrophy with podocytosis and focal segmental glomerular sclerosis lesions, accompanied by tubular dilatation, appeared in the Buff/Mna group. At Day 122, the intensity of the tubular and glomerular lesions increased in Buff/Mna recipients but not in the control group. An analysis of desmin and Kim-1 (early markers of glomerular and tubular damage, respectively) transcripts expression showed that glomerular lesions precede tubular injury in this model. A monocyte infiltration associated with an increase in TNFα, IL1 and IL12 transcripts appeared before the recurrence. An early increase in Cbeta TCR transcripts with a predominant Th2 profile was observed, highlighting a Th2 polarization in the Buff/Mna recurrence. CONCLUSIONS: The comparison of profiles of recurrence and initial disease highlighted the same mediators for both events. We propose that initial Buff/Mna idiopathic nephrotic syndrome (INS) and post-transplantation recurrence represent the same entity and a valuable tool for the study of recurring INS.


Assuntos
Transplante de Rim/efeitos adversos , Síndrome Nefrótica/patologia , Complicações Pós-Operatórias , Animais , Síndrome Nefrótica/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Recidiva , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
J Am Soc Nephrol ; 20(1): 57-67, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19020006

RESUMO

Buffalo/Mna rats spontaneously develop FSGS and nephrotic syndrome as a result of an immune disorder. Similar to some humans with FSGS, the disease recurs after renal transplantation, suggesting the involvement of a circulating factor. Here, we tested the effect of several immunosuppressive treatments on these rats. Although corticosteroids, cyclosporin A, and anti-T cell receptor treatment reduced proteinuria, only the deoxyspergualin derivative LF15-0195 led to a rapid and complete normalization of proteinuria. Furthermore, this compound led to the regression of renal lesions during both the initial disease and posttransplantation recurrence. The frequency of splenic and peripheral CD4+CD25+FoxP3+ T lymphocytes significantly increased with remission. Moreover, the transfer of purified LF15-0195-induced CD4+CD25+ T cells to irradiated Buff/Mna rats significantly reduced their proteinuria compared with the transfer of untreated control cells, suggesting that LF15-0195 induces regulatory T cells that are able to induce regression of rat nephropathy. These data suggest that idiopathic nephrotic syndrome/FSGS disease can be regulated by cellular transfer, but how this regulation leads to the reorganization of the podocyte cytoskeleton remains to be determined.


Assuntos
Imunossupressores/uso terapêutico , Síndrome Nefrótica/tratamento farmacológico , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/uso terapêutico , Citocinas/genética , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/imunologia , Guanidinas/uso terapêutico , Transplante de Rim/efeitos adversos , Masculino , NF-kappa B/fisiologia , Síndrome Nefrótica/imunologia , Ratos , Receptores de Antígenos de Linfócitos T/fisiologia , Recidiva , Linfócitos T Reguladores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA