Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990041

RESUMO

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Assuntos
Thlaspi , Cromossomos , Ecossistema , Genoma de Planta/genética , Anotação de Sequência Molecular , Thlaspi/genética , Pesquisa Translacional Biomédica
2.
Methods Mol Biol ; 2638: 173-189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781642

RESUMO

KASP is commonly used to genotype bi-allelic SNPs and In/Dels, and the standard protocol works well when both alleles are nearly equally prevalent in the DNA template. To detect rare alleles in bulked samples or to distinguish more than three genotypes, such as tri-allelic loci or mutations across orthologous genes in polyploids, adjustments to the protocol and/or data analysis are required. In this chapter, we present modified protocols for these non-traditional applications, including reaction conditions that enhance the fluorophore signal from rare alleles, resulting in increased KASP assay sensitivity. We also describe alternative KASP data analysis approaches that increase statistical certainty of genotyping calls. Furthermore, this increased assay sensitivity enables high-throughput genotyping using KASP, as samples can be pooled and tested in a single reaction. For example, rare alleles can be detected in mixed seed pools when present in ratios as low as 1 in 200. The assay modifications presented here expand the options available for complex genotyping, and retain KASP's advantages of being cheap, fast, and accurate.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Poliploidia , Humanos , Genótipo , Alelos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único
3.
Pest Manag Sci ; 77(5): 2477-2484, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33442897

RESUMO

BACKGROUND: Amaranthus palmeri is an aggressive and prolific weed species with major impact on agricultural yield and is a prohibited noxious weed across the Midwest. Morphological identification of A. palmeri from other Amaranthus species is extremely difficult in seeds, which has led to genetic testing for seed identification in commercial seed lots. RESULTS: We created an inexpensive and reliable genetic test based on novel, species-specific, single nucleotide polymorphisms (SNPs) from GBS (Genotyping by Sequencing) data. We report three SNP-based genetic tests for identifying A. palmeri alone or in a mixed pool of Amaranthus spp. Sensitivity ranged from 99.8 to 100%, specificity from 99.59 to 100%. Accuracy for all three tests is > 99.7%. All three are capable of reliably detecting one A. palmeri seed in a pool of 200 Amaranthus spp. seeds. The test was validated across 20 populations of A. palmeri, along with eight other Amaranthus species, the largest and most genetically diverse panel of Amaranthus samples to date. CONCLUSION: Our work represents a marked improvement over existing commercial assays resulting in an identification assay that is (i) accurate, (ii) robust, (iii) easy to interpret and (iv) applicable to both leaf tissue and pools of up to 200 seeds. Included is a data transformation method for calling of closely grouped competitive fluorescence assays. We also present a comprehensive GBS dataset from the largest geographic panel of Amaranthus populations sequenced. Our approach serves as a model for developing markers for other difficult to identify species. © 2021 Society of Chemical Industry.


Assuntos
Amaranthus , Alelos , Amaranthus/genética , Sequência de Bases , Plantas Daninhas/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA