Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Med Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924388

RESUMO

Oncogenic mutations in the RAS gene account for 30% of all human tumors; more than 60% of which present as KRAS mutations at the hotspot codon 12. After decades of intense pursuit, a covalent inhibition strategy has enabled selective targeting of this previously "undruggable" target. Herein, we disclose our journey toward the discovery of MK-1084, an orally bioavailable and low-dose KRASG12C covalent inhibitor currently in phase I clinical trials (NCT05067283). We leveraged structure-based drug design to identify a macrocyclic core structure, and hypothesis-driven optimization of biopharmaceutical properties to further improve metabolic stability and tolerability.

2.
Oncoimmunology ; 10(1): 1896643, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33796403

RESUMO

Prostaglandin E2 (PGE2), an arachidonic acid pathway metabolite produced by cyclooxygenase (COX)-1/2, has been shown to impair anti-tumor immunity through engagement with one or more E-type prostanoid receptors (EP1-4). Specific targeting of EP receptors, as opposed to COX-1/2 inhibition, has been proposed to achieve preferential antagonism of PGE2-mediated immune suppression. Here we describe the anti-tumor activity of MF-766, a potent and highly selective small-molecule inhibitor of the EP4 receptor. EP4 inhibition by MF-766 synergistically improved the efficacy of anti-programmed cell death protein 1 (PD-1) therapy in CT26 and EMT6 syngeneic tumor mouse models. Multiparameter flow cytometry analysis revealed that treatment with MF-766 promoted the infiltration of CD8+ T cells, natural killer (NK) cells and conventional dendritic cells (cDCs), induced M1-like macrophage reprogramming, and reduced granulocytic myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME). In vitro experiments demonstrated that MF-766 restored PGE2-mediated inhibition of lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production in THP-1 cells and human blood, and PGE2-mediated inhibition of interleukin (IL)-2-induced interferon (IFN)-γ production in human NK cells. MF-766 reversed the inhibition of IFN-γ in CD8+ T-cells by PGE2 and impaired suppression of CD8+ T-cells induced by myeloid-derived suppressor cells (MDSC)/PGE2. In translational studies using primary human tumors, MF-766 enhanced anti-CD3-stimulated IFN-γ, IL-2, and TNF-α production in primary histoculture and synergized with pembrolizumab in a PGE2 high TME. Our studies demonstrate that the combination of EP4 blockade with anti-PD-1 therapy enhances antitumor activity by differentially modulating myeloid cell, NK cell, cDC and T-cell infiltration profiles.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Prostaglandina E Subtipo EP4 , Animais , Ciclo-Oxigenase 2 , Dinoprostona , Macrófagos , Camundongos
3.
Differentiation ; 76(7): 795-808, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18177422

RESUMO

Differentiation of PC12 cells by nerve growth factor (NGF) is characterized by changes in signal transduction pathways leading to growth arrest and neurite extension. The transcription factor p53, involved in regulating cell cycle and apoptosis, is also activated during PC12 differentiation and contributes to each of these processes but the mechanisms are incompletely understood. NGF signaling stabilizes p53 protein expression, which enables its transcriptional regulation of target genes, including the newly identified target, wnt7b, a member of the wnt family of secreted morphogens. We tested the hypothesis that wnt7b expression is a factor in NGF-dependent neurite outgrowth of differentiating PC12 cells. Wnt7b transcript and protein levels are increased following NGF treatment in a p53-dependent manner, as demonstrated by a reduction in wnt7b protein levels following stable shRNA-mediated silencing of p53. In addition, overexpressed human tp53 was capable of inducing marked wnt7b expression in neuronal PC12 cells but tp53 overexpression did not elevate wnt7b levels in several tested human tumor cell lines. Ectopic wnt7b overexpression was sufficient to rescue neurite outgrowth in NGF-treated p53-silenced PC12 cells, which could be blocked by c-Jun N-terminal kinase (JNK) inhibition with SP600125 and did not involve beta-catenin nuclear translocation. Addition of sFRP1 to differentiation medium inhibited wnt7b-dependent phosphorylation of JNK, demonstrating that wnt7b is secreted and signals through a JNK-dependent mechanism in PC12 cells. We further identify an NGF-inducible subset of wnt receptors that likely supports wnt7b-mediated neurite extension in PC12 cells. In conclusion, wnt7b is a novel p53-regulated neuritogenic factor in PC12 cells that in conjunction with NGF-regulated Fzd expression is involved in p53-dependent neurite outgrowth through noncanonical JNK signaling.


Assuntos
Fator de Crescimento Neural/farmacologia , Neuritos/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Imunofluorescência , Humanos , MAP Quinase Quinase 4/metabolismo , Células PC12 , Ratos , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteínas Wnt/metabolismo
4.
Toxicol Sci ; 172(1): 155-166, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31406999

RESUMO

MK-7680, a cyclic nucleotide prodrug, caused significant kidney tubule injury in female rats when administered orally at 1000 mg/kg/day for 2 weeks using 10% Polysorbate 80 as vehicle. However, kidney injury was absent when MK-7680 was administered at the same dose regimen using 100% Polyethylene Glycol 200 (PEG 200) as the vehicle. Subsequent investigations revealed that MK-7680 triphosphate concentrations in kidney were much lower in rats treated with MK-7680 using PEG 200 compared with 10% Polysorbate 80 vehicle, whereas plasma exposures of MK-7680 prodrug were similar. In vitro studies demonstrated that PEG 200 is an inhibitor of human renal uptake transporter organic anion transporter 3 (OAT3), of which MK-7680 is a substrate. Furthermore, PEG 200 and PEG 400 were found to interfere in vitro with human renal transporters OAT3, organic cation transporter (OCT) 2, multidrug resistance-associated protein (MRP) 2 and 4, and multidrug and toxin extrusion protein (MATE) 1 and 2K, but not OAT1. These results support a conclusion that PEG 200 may prevent MK-7680-induced kidney injury by inhibiting its active uptake into proximal tubular cells by OAT3. Caution should be exercised therefore when using PEGs as vehicles for toxicity assessment for compounds that are substrates of renal transporters.

5.
BMC Genomics ; 8: 139, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17540029

RESUMO

BACKGROUND: p53 is recognized as a critical regulator of the cell cycle and apoptosis. Mounting evidence also suggests a role for p53 in differentiation of cells including neuronal precursors. We studied the transcriptional role of p53 during nerve growth factor-induced differentiation of the PC12 line into neuron-like cells. We hypothesized that p53 contributed to PC12 differentiation through the regulation of gene targets distinct from its known transcriptional targets for apoptosis or DNA repair. RESULTS: Using a genome-wide chromatin immunoprecipitation cloning technique, we identified and validated 14 novel p53-regulated genes following NGF treatment. The data show p53 protein was transcriptionally activated and contributed to NGF-mediated neurite outgrowth during differentiation of PC12 cells. Furthermore, we describe stimulus-specific regulation of a subset of these target genes by p53. The most salient differentiation-relevant target genes included wnt7b involved in dendritic extension and the tfcp2l4/grhl3 grainyhead homolog implicated in ectodermal development. Additional targets included brk, sdk2, sesn3, txnl2, dusp5, pon3, lect1, pkcbpb15 and other genes. CONCLUSION: Within the PC12 neuronal context, putative p53-occupied genomic loci spanned the entire Rattus norvegicus genome upon NGF treatment. We conclude that receptor-mediated p53 transcriptional activity is involved in PC12 differentiation and may suggest a contributory role for p53 in neuronal development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Células PC12 , Ratos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
6.
Sci Rep ; 7: 44820, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327633

RESUMO

Severe bradycardia/bradyarrhythmia following coadministration of the HCV-NS5B prodrug sofosbuvir with amiodarone was recently reported. Our previous preclinical in vivo experiments demonstrated that only certain HCV-NS5B prodrugs elicit bradycardia when combined with amiodarone. In this study, we evaluate the impact of HCV-NS5B prodrug phosphoramidate diastereochemistry (D-/L-alanine, R-/S-phosphoryl) in vitro and in vivo. Co-applied with amiodarone, L-ala,SP prodrugs increased beating rate and decreased beat amplitude in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), but D-ala,RP produgs, including MK-3682, did not. Stereochemical selectivity on emerging bradycardia was confirmed in vivo. Diastereomer pairs entered cells equally well, and there was no difference in intracellular accumulation of L-ala,SP metabolites ± amiodarone, but no D-ala,RP metabolites were detected. Cathepsin A (CatA) inhibitors attenuated L-ala,SP prodrug metabolite formation, yet exacerbated L-ala,SP + amiodarone effects, implicating the prodrugs in these effects. Experiments indicate that pharmacological effects and metabolic conversion to UTP analog are L-ala,SP prodrug-dependent in cardiomyocytes.


Assuntos
Amiodarona/química , Amiodarona/farmacologia , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Interações Medicamentosas , Amiodarona/farmacocinética , Animais , Antiarrítmicos/farmacocinética , Antivirais/farmacocinética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Cobaias , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores
7.
Leuk Res ; 48: 46-56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27486062

RESUMO

The presence of AML1-ETO (RUNX1-CBF2T1), a fusion oncoprotein resulting from a t(8;21) chromosomal translocation, has been implicated as a necessary but insufficient event in the development of a subset of acute myeloid leukemias (AML). While AML1-ETO prolongs survival and inhibits differentiation of hematopoietic stem cells (HSC), other contributory events are needed for cell proliferation and leukemogenesis. We have postulated that specific tumor suppressor genes keep the leukemic potential of AML1-ETO in check. In studying del(9q), one of the most common concomitant chromosomal abnormalities with t(8;21), we identified the loss of an apparent tumor suppressor, TLE4, that appears to cooperate with AML1-ETO to confer a leukemic phenotype. This study sought to identify the molecular basis of this cooperation. We show that the loss of TLE4 confers proliferative advantage to leukemic cells, simultaneous with an upregulation of a pro- inflammatory signature mediated through aberrant increases in Wnt signaling activity. We further demonstrate that inhibition of cyclooxygenase (COX) activity partly reverses the pro-leukemic phenotype due to TLE4 knockdown, pointing towards a novel therapeutic approach for myeloid leukemia.


Assuntos
Inflamação , Leucemia Mieloide/patologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Proteínas Wnt/fisiologia , Deleção Cromossômica , Cromossomos Humanos Par 9 , Inibidores de Ciclo-Oxigenase/farmacologia , Deleção de Genes , Regulação Leucêmica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Leucemia Mieloide/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor
8.
Sci Transl Med ; 4(152): 152ra128, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993295

RESUMO

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, results from the transcriptional silencing of FMR1 and loss of the mRNA translational repressor protein fragile X mental retardation protein (FMRP). Patients with FXS exhibit changes in neuronal dendritic spine morphology, a pathology associated with altered synaptic function. Studies in the mouse model of fragile X have shown that loss of FMRP causes excessive synaptic protein synthesis, which results in synaptic dysfunction and altered spine morphology. We tested whether the pharmacologic activation of the γ-aminobutyric acid type B (GABA(B)) receptor could correct or reverse these phenotypes in Fmr1-knockout mice. Basal protein synthesis, which is elevated in the hippocampus of Fmr1-knockout mice, was corrected by the in vitro application of the selective GABA(B) receptor agonist STX209 (arbaclofen, R-baclofen). STX209 also reduced to wild-type values the elevated AMPA receptor internalization in Fmr1-knockout cultured neurons, a known functional consequence of increased protein synthesis. Acute administration of STX209 in vivo, at doses that modify behavior, decreased mRNA translation in the cortex of Fmr1-knockout mice. Finally, the chronic administration of STX209 in juvenile mice corrected the increased spine density in Fmr1-knockout mice without affecting spine density in wild-type mice. Thus, activation of the GABA(B) receptor with STX209 corrected synaptic abnormalities considered central to fragile X pathophysiology, a finding that suggests that STX209 may be a potentially effective therapy to treat the core symptoms of FXS.


Assuntos
Baclofeno/uso terapêutico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/patologia , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Receptores de GABA-B/metabolismo , Animais , Baclofeno/análogos & derivados , Baclofeno/sangue , Baclofeno/farmacologia , Comportamento Animal/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Água Potável , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/metabolismo , Agonistas dos Receptores de GABA-B/administração & dosagem , Agonistas dos Receptores de GABA-B/sangue , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Receptores de AMPA/metabolismo , Convulsões/tratamento farmacológico , Convulsões/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura
9.
Neurochem Res ; 32(9): 1573-85, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17592775

RESUMO

NGF is recognized for its role in neuronal differentiation and maintenance. Differentiation of PC12 cells by NGF involves p53, a transcription factor that controls growth arrest and apoptosis. We investigated NGF influence over p53 activity during NO-induced apoptosis by sodium nitroprusside in differentiated and mitotic PC12 cells. NGF-differentiation produced increased p53 levels, nuclear localization and sequence-specific DNA binding. Apoptosis in mitotic cells also produced these events but the accompanying activation of caspases 1-10 and mitochondrial depolarization were inhibited during NGF differentiation and could be reversed in p53-silenced cells. Transcriptional regulation of PUMA and survivin expression were not inhibited by NGF, although NO-induced mitochondrial depolarization was dependent upon de novo gene transcription and only occurred in mitotic cells. We conclude that NGF mediates prosurvival signaling by increasing factors such as Bcl-2 and p21(Waf1/Cip1) without altering p53 transcriptional activity to inhibit mitochondrial depolarization, caspase activation and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , DNA/metabolismo , Fator de Crescimento Neural/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Ativação Enzimática , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Células PC12 , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA